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Produit scalaire dans l'espace

Pour les exercices 1 à 4,  on considère le cube ci-dessous de côté a  . 

M, N, P  et I sont les milieux respectifs de [CD], [EH], [BF] et [CG].

Ex 7-1     :   Vrai ou faux 

1 ) A⃗B . A⃗C=AB2

2 ) A⃗D .A⃗C=AC2  7 ) A⃗C. A⃗G=a2√6

3 ) B⃗C . A⃗C = E⃗F . G⃗E 8 ) A⃗C. A⃗H=2a2

4 ) A⃗C .A⃗H = A⃗C .A⃗D 9 ) A⃗B .F⃗G= 0⃗

5 ) B⃗D .B⃗H=F⃗H2  10 ) A⃗D .A⃗G=0  

6 ) B⃗C. A⃗C=a2√2 11 ) B⃗G . E⃗F=0

Ex 7-2     :   Calculer en projetant …

Calculer en projetant orthogonalement l’un des vecteurs sur la droite 
portant l’autre vecteur ou éventuellement sur un plan contenant l’autre 
vecteur.

1 ) A⃗G . B⃗G   

2 ) A⃗D . P⃗G   

3 ) D⃗C . D⃗I   

4 ) A⃗M . A⃗D

Ex 7-3     :   Calculer en utilisant un repère …

On se place dans le repère orthonormé (A; i⃗ , j⃗ , k⃗ ) , tel que i⃗  , j⃗  

et k⃗   sont des vecteurs unitaires respectivement colinéaires et de même 

sens que les vecteurs A⃗B , A⃗D  et A⃗E  . Calculer : 

1 ) E⃗I . P⃗N   

2 ) N⃗I . P⃗M   

3 ) B⃗H . A⃗C

Ex 7-4     :   Trouver un angle

En calculant de deux façons différentes le produit scalaire D⃗N . D⃗I , 

déterminer cos N̂DI , et déduire une valeur approchée à 10−1  près de

N̂DI .

On peut utiliser  le repère orthonormé (A; i⃗ , j⃗ , k⃗ ) , tel que i⃗  , j⃗  

et k⃗   sont des vecteurs unitaires respectivement colinéaires et de même 

sens que les vecteurs A⃗B , A⃗D  et A⃗E .

On peut même pour simplifier se placer dans un cube de côté 1.
Ce qui ne change rien car dans un agrandissement ou une réduction, les angles ne sont pas 
modifiés.
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Pour les exercices 5 à 8, l'espace est muni d'un repère orthonormé
(O; i⃗ , j⃗ , k⃗ ) . 

Ex 7-5     :   Triangle rectangle

Soit A (3 ;4 ;−2 )  , B (1; 6; 0 )  et C (−2 ;2 ;1 )
Montrer que le triangle ABC est rectangle et indiquer en quel point.

Ex 7-6     :   Triangle isocèle

Soit M (3;−4 ;−2 ) , N (−1;3 ;2 )  et P (7;−1;3 )

Démontrer que MNP est isocèle et déterminer à 10−1  près tous les angles

du triangle.

Ex 7-7 : Parallélogramme 

Soit E (−3; 2; 1)  , F (1 ;−1; 3 )  , G (5 ;1;−3)  et H (1; 4 ;−5 )
Montrer que EFGH est un quadrilatère puis déterminer sa nature.
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Démontrer une orthogonalité sans les vecteurs

Ex 7-8     :   Vrai ou faux 

Dans l'espace :
1 ) Deux droites orthogonales à une même droite sont parallèles entre elles.

2 ) Deux droites orthogonales à un même plan sont parallèles entre elles.

3 ) Deux plans orthogonaux à une même droite sont parallèles entre eux.

Ex 7-9 : Entre deux droites 

Dans le cube ABCDEFGH, dans chacun des
cas montrer que les droites sont orthogonales :

1 ) (FG) et (AB)   

2 ) (HG) et (FG)   

3 ) (EB) et (GD)   

4 ) (NF) et (HD)

Ex 7-10 : Entre une droite et un plan 
 
Dans le cube ABCDEFGH, dans chacun
des cas montrer que la droite et le plan
sont orthogonaux :
1 ) (AB) et (BFG)  

2 ) (DG) et (BCE)  

3 ) (AF) et (CEH) 

4 ) (MI) et (CHE)

Ex 7-11 : Dans une pyramide à base carrée 

Soit la pyramide SABCD régulière à
base carrée ci-contre . On note I le
milieu de [BC].
1 ) Démontrer que les droites (SO) et
(BC) sont orthogonales.
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2 ) En déduire que la droite (BC) est orthogonale au plan (SOI).

Ex 7-12 : En utilisant la trigonométrie 

Soit un cube ABCDEFGH de côté 4 cm et
le point O centre du carré EFGH.

1 ) Déterminer l'intersection des plans
(EDG) et (HFB).

2 ) Calculer tan ĤDO  et tan D̂BH .

3 ) En déduire que les droites (HB) et (DO) sont orthogonales.

4 ) Démontrer que les droites (HD) et (EG) sont orthogonales.

5 ) En déduire que la droite (EG) est orthogonale au plan (HFB), puis 
orthogonale à la droite (HB).

6 ) Démontrer que la droite (HB) est orthogonale au plan (DEG).
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Démontrer une orthogonalité avec les vecteurs

Dans la suite, l'espace est muni d'un repère orthonormé (O; i⃗ , j⃗ , k⃗ ) .

Ex 7-13     :   Trouver a et b 

Déterminer les réels a  et b  pour que les vecteurs u⃗ ( 2
−5
a )  et v⃗ (−3

1
b )  

soient orthogonaux.

Ex 7-14 : Droites  perpendiculaires – droites orthogonales 

Soit les points A (0; 4 ;2 ) , B (−1;−3;−2 ) , C (1; 1; 1)  et D (2 ; 2;−1 )
1 ) Les droites (AB) et (BD) sont-elles perpendiculaires ?

2 ) Les droites (AB) et (CD) sont-elles orthogonales ? 

Ex 7-15 : Projeté orthogonal sur une droite – distance d’un point à une droite 

Soit les points A (0;−1;3 )  et B (−1; 2; 5 ) .

1 ) Montrer que le point H (1;−4 ;1 )  est le projeté orthogonal du point

C(5;−2; 0)  sur la droite (AB ) .

2 ) En déduire la distance du point C à la droite (AB).
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Ex 7-16 : Plan médiateur

Définition : 

Dans l'espace, le plan médiateur d'un segment est constitué des points équidistants
des extrémités de ce segment. Il s'agit du plan passant par le milieu du segment et 
orthogonal à ce segment.

Dans le cube ABCDEFGH :

1 ) Justifier que les vecteurs B⃗E  et D⃗F  sont

orthogonaux.

2 ) Démontrer que (DF) est perpendiculaire à (BEG).

3 ) (BEG) est-il le plan médiateur de [DF] ?

4 ) Déterminer l’ensemble des points équidistants de A et G.

Ex 7-17 : Distance d'un point à un plan – volume d’un tétraèdre

Rappel     :   le volume d’un tétraèdre est 
base×hauteur

3

Dans un cube ABCDEFGH de côté 1, on considère les points M, N et P 
centres respectifs des faces EFGH, BCGF et ABFE. 

On considère le repère orthonormé (A ;A⃗B, A⃗D, A⃗E )

1 ) Calculer les produits scalaires D⃗F . M⃗P  et D⃗F . N⃗P .
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2 ) Montrer que (DF) est perpendiculaire à (MNP).

3 ) Soit T le point d'intersection de (DF) et (MNP).
Montrer que T est le projeté orthogonal de N sur (DF).

4 ) En calculant de deux façons différentes le produit scalaire D⃗F . D⃗N , 

déterminer la distance du point D au plan (MNP)

5 ) On note I le milieu de [PN] . 

a ) Montrer que les vecteurs M⃗I  et P⃗N  sont orthogonaux.

b ) En déduire l’aire du triangle MNP.

6 ) En déduire le volume du tétraèdre DMNP.
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