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Chapitre 0 — Raisonnements

I — Le raisonnement par 1'absurde

Principe : Le raisonnement par I'absurde consiste a démontrer qu'une proposition est vraie en
supposant qu'elle est fausse, puis, en utilisant des raisonnements corrects, a aboutir a une absurdité
logique.

Comme les raisonnements sont rigoureux, la seule erreur est I'hypothese de départ.

Exemple historique : Démontrons par I'absurde que V2#Q — c'est-d-dire que /2 ne peut pas
s'écrire sous forme d'une fraction de nombres entiers.
Supposons que V2e€Q.

Il existe donc peN” et geIN" tels que \/EZ% est irréductible.

2
On a alors 2=%z>2q2= p’ (1)

On en déduit que p est un nombre pair (s'il était impair, p* serait impair...) donc il existe p'€N
telque p=2p"'.

Onadonc p°=4p'’. En remplagant dans (1), on obtient 2q°=4 p”°=q°=2p'* (2)

On en déduit la-encore que q est pair, il existe donc q'€IN tel que q=2q".

o 2 T r
On en déduit que Vo=2-2P _ p_, . Finalement on peut simplifier la fraction par 2, ce qui est
p

a 29 q
absurde puisque q est irréductible.
Conclusion : L'hypothése V2€Q est absurde, donc V2¢Q .

Exercice 1 : Sur une ile, il y a deux types d'habitants.

Les menteurs qui mentent toujours et les honnétes qui disent toujours la vérité.
Un homme dit : « Je suis un menteur »

Démontrer par I'absurde que cet homme n'est pas un habitant de I'le.

Exercice 2 : Démontrer par l'absurde la proposition suivante :
Pour tous réels a>0 et b>0,ona vVa+b<vVa+Vb.
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IT — Le raisonnement par récurrence

Principe : Le raisonnement par récurrence s'utilise pour démontrer une propriété vraie pour tout
entier =1, avec NyEIN — c'est-a-dire que la propriété est vraie a partir du rang n,€N .
Il comporte deux étapes :
* Initialisation : On démontrer que la propriété est vraie au premier rang n, .
* Hérédité : On démontre que si la propriété est vraie au rang n , alors elle est vraie au rang
suivant n+1 .
Cela permet de vérifier que la propriété est vraie pour tout n=n, :
* Elle est vraie pour N, grace a l'initialisation.
* Comme elle est vraie pour N, , I'hérédité assure qu'elle est vraie au rang suivant ny+1 .
* Comme elle est vraie pour ny+1, I'hérédité assure qu'elle est vraie au rang suivant Nny+2 .
* Et ainsi de suite...

Ilustration : Ce type de démonstration peut étre illustré par une suite de dominos : on fait tomber un
domino — l'initialisation — et comme la chute d'un domino entraine la chute du domino suivant —
I'hérédité — alors tous les dominos seront tombés a la fin.

. n(n+1) ,
Exemple : On a vu en classe de premiére que pour tout n€IN, 0+1+2+...+ n=———"/cequise
n+1 , oL p
note Z k= . Démontrons cette propriété par récurrence.
n +1
Soit P(n) la propriété . kZ%.
k=0
* [Initialisation : Montrons P (0) :
0
0(0+1
Ona Y k=0, et M:o donc P(0) est vraie.
k=0 2
+1
s Hérédité : Supposons que P(n) soit vraie : 0+1+2+...+n:% (1).
Montrons que P(n+1) est alors vraie également.
Pour obtenir la somme souhaitée, on ajoute n+1 a chaque membre de (1) :
n+l n+1
0+1+2+...+n+(n+1)= (r12 1)+n+1®2k n2+1) n+1 Zk (n+1)( n+2)
P(n+1) est donc vraie.
n +1
* Conclusion : Pour tout n€IN Z k:M.

k=0 2

. . . nin+1)(2n+1
Exercice 3 : Démontrer par récurrence que pour tout n€IN | Z k = ( ) ) .
k=0

Exercice 4 :

Définition : Soient a€Z et b€Z . On dit que a divise b (ou que b est un multiple de a)
s'il existe k€EZ tel que b=ka.

a) Démontrer par récurrence que pour tout n€IN | 6 divise 7"—1.

b) Démontrer par récurrence que pour tout n€IN , 3 divise n’—n .
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Chapitre 1 — Divisibilité des entiers

Définitions : On note IN I'ensemble des entiers naturels : N={0;1;2;3;4;...}
On note Z I'ensemble des entiers relatifs : Z={...;—4;—3;—2;—1;0;1;2;3;4;...}

I — Divisibilité dans Z

a) Multiples et diviseurs d'un nombre entier relatif

Définition : Soient a€Z et b€Z . On dit que a divise b (ou que b est un multiple de a)
s'il existe KEZ tel que b=ka.On note alb, et afb dans le cas contraire.

Remarques :
e Pourtout aeZ, 0Xa=0 donc tout entier relatif a divise 0.

* Tout entier relatif non nul b posséde un nombre fini de diviseurs : en effet, ses diviseurs
sont en valeur absolue inférieurs ou égaux a |b| , les diviseurs appartiennent a
{=|bl;...;—=1;1;...;|H} . b adoncauplus 2|b diviseurs.

Exemple : L'ensemble des diviseurs dans Z de 24 sont :
[—24;-12;-8;-6;—4;—-3;—-2;-1;1;2;3;4;6;8;12;24 | .

Exercice 1 : Ecrire un algorithme qui donne les diviseurs dans IN d'un entier naturel.

Sur Texas Instruments, on pourra utiliser les instructions « partDéc » et « partEnt » qui se trouvent
dans math - NUM.

Sur Casio, on pourra utiliser l'instruction « Frac » qui se trouve dans OPTN - NUM.

Ces instructions donnent la partie décimale et la partie entiere d'un nombre.

b) Propriétés de la division dans 1I'ensemble des entiers relatifs

a, b et ¢ sont trois entiers relatifs non nuls.
Propriété : Si a|b et alc, alors pour tout ueZ et véZ, alub+vc.

Preuve : Si a|b, alors il existe k€Z tel que b=ka.
Si alb, alors il existe k'€Z tel que b=k 'a .
On en déduit que ub+vc=uka+vk'a=a(uk+vk') donc alub+vc puisque uk+vk'€Z .

Exercice résolu : Soit n€Z tel que n|n+8 . Déterminons les valeurs possibles de n .
* n|n et n|n+8 donc njn+8—n=n|8.
s Réciproquement, si n|8, comme n|n, alors n|n+8.
Conclusion : n|n+8<n|8 . Les valeurs possibles pour n sont donc —8;—4;—-2;-1;1;2;4;8.

Propriété (transitivité) : Si a|b et b|c alors alc.

Preuve : Si a|b, alors il existe k€Z tel que b=ka . Si b|c, alors il existe k '€Z tel que
c=k'b.Onadonc c=k'ka donc a|c puisque kk'€Z .
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IT — Division euclidienne

Théoréme et définition : Soient a€IN et b€EN avec b#0.

1l existe un unique couple (q,r) d'entiers naturels tels que a=bq+r avec 0<r<b.
On dit que a est le dividende, b le diviseur, q le quotient et r le reste dans la division
euclidienne de a par b.

Remarques :
* Le mot « diviseur » n'a pas le méme sens ici que dans la partie I.

* Il yade multiples écritures de a sous la forme bq+r : par exemple, pour a=103 et
b=13,ona 103=13X7+12=13X6+25=13X5+38, etc.
Mais seule la premiere égalité est la relation de division euclidienne, car 0<12<13.

* Lorsqu'on réalise une division « a la main », on réalise une division euclidienne.

Interprétation graphique : On encadre a par deux multiples consécutifs de b .

[] IIJ r_}IIJ aas I'_.l'IIJ L :ff_ |._|IIJ

Cette interprétation permet de comprendre comment on étend la division euclidienne a Z :
Soient a€Z , bEZ avec b#0, il existe un unique couple (q,r) tel que a=bq+r avec
0<r</b .

Propriété admise pour la preuve du théoréeme : On admettra le résultat suivant :
Toute partie non vide de IN admet un plus petit élément.

Exemples et contre-exemples :
* 0 est le plus petit élément de N .
* Z n'apas de plus petit élément.
* Dans R, la propriété est fausse : l'intervalle ]—3;8] n'a pas de plus petit élément.

Preuve du théoreme :

* Existencede q et r :

1% cas : Si 0<a<b, le couple (q,r)=(0,a) convient.

2%cas: Si b<a,alors 1<b<a car b estnon nul.
Soit M l'ensemble des multiples de b strictement supérieurs a a .
L'entier 2bXa appartienta M car b>1 donc 2bXa>2a>a.
Donc M est une partie non vide de IN et d'aprés la propriété précédente, il posséde
un plus petit élément, c'est-a-dire un multiple de b strictement supérieur a a tel que
le multiple précédent soit inférieur ou égal a a . Soit gb ce multiple précédent.
1 existe donc un entier relatif q tel que gb<a<(q+1)b.
Comme b<a,ona b<a<(q+1)b donc 0<q car b#0 etdonc g estun entier
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naturel.
Posons alors r=a—bgq.Comme a, b et q sont des entiers, r est un entier
également.
De gb<a, on en déduit que r=0, donc r estun entier naturel.
De (q+1)b>a, on en déduit que r<b .
Dans les deux cas, on a trouvé un couple (q, r) tel que a=bqg+r avec 0<r<b.

*  Unicité du couple (q,r) :
Supposons qu'il existe deux couples (q,r) et (q',r') tels que :
a=bq+r=bq'+r’ (1)avec 0<r<b et O<r'<b’ (2).
De (1), on déduit que b(q—q')=r'—r avec q'—q entier, donc r'—r est un multiple de
b . De (2), on déduit que —b<r'—r<b . Le seule multiple de b strictement compris entre
—b et b est0,donc r'—r=0, soir r'=r . Par (1), on en déduit que q'=q . Donc (q,r)
est unique.

Exercice 2 : Ecrire 4 la calculatrice un programme qui effectue la division euclidienne de deux
entiers.

III — Congruences dans Z

Propriété et définition : Soit ¢ un entier naturel non nul. Deux entiers relatifs a et b ont
meéme reste dans la division euclidienne par c si et seulement si a—b est un multiple de c .
Si c'est le cas, on dit que a et b sont congrus modulo ¢ (ou que a est congrua b modulo
c).Onnote a=b(c) ou a=b(modc) ou a=b[c] ou a=b[mod c].

Exemples : Si on s'intéresse aux congruences modulo 4, on a :
5=1(mod 4), 6=2(mod4), 7=3(mod 4), 8=0(mod 4), 9=1(mod 4) , ...

Preuve de la propriété : On écrit les relations de division euclidienne par ¢ : a=cq+r, 0<r<c et
b=cq+r', 0<r'<c.
+  Supposons que r=r', alors a—b=c(q—q') avec q—q' entier, donc a—b estun
multiple de ¢ .
+ Réciproquement, si a—b est multiple de c, alors c|a—b et comme c|c(q—q"), alors par
combinaison linéaire, c|r—r'.Comme —c<r—r'<c, il faut que r—r'=0,soit r=r".

Exercice résolu : Démontrons que 214=25(9) .
214—25=189=9x%21 donc 214=25(9).

Remarques : Soient a un entier relatif et ¢ un entier naturel non nul.
e a estunmultiple de ¢ sietseulementsi a=0[c].
* Les nombres congrus a a modulo ¢ sont les nombres de la forme a+kc avec k€Z .
* 1 estlereste de la division euclidienne de a par c si et seulement siona a=r(modc) et
O<r<c.

Propriété (transitivité) : Soient a, a’ et a'’ des entiers relatifs et ¢ un entier naturel non

nul.
Si a=a'(modc) et a'=a’''(modc),alors a=a''(modc).
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Propriétés (congruences et opérations) : Soient a, b, a’', b’ des entiers relatifs et ¢ un

entier naturel non nul. Si a=b(modc) et a’'=b'(modc), alors :
« a+a'=b+b'(modc) et a—a'=b—b'(modc)
« aa'=bb'(modc)
« a"=b"(mod c) pour tout neN",

Preuve : Par hypothese, il existe k€Z et k'€Z telsque a=b+kc et a'=b'+k'c.
« a+a'=b+b'+(k+k')c avec k+k' entier, donc a+a'=b+b'(c).
 aa'=bb'+(bk'+b'k+kk'c)c avec bk'+b'k+kk'c entier,donc aa'=bb'(c).
* Pour la derniére relation, c'est une récurrence sur la relation précédente.

Remarques : Les reégles opératoires sont les mémes qu'avec une égalité classique, cependant :
Il n'y a pas de division, ou de « simplification » : 22=18(4) mais 11 et 9 ne sont pas
congrus modulo 4.

*  Pas de propriété hasardeuse avec les puissances : 5=1(4), mais 2°=64=0 (4) et
2'=2(4) donc 2° et 2' ne sont pas congrus modulo 4.

Exercice résolu : Cherchons le reste de la division euclidienne de 2%
2°=4, 2°=8 et 2*'=16 donc 2°=4(5), 2°=3(5) et 2*=1(5).
342=4x85+2 donc 2**=2"%"=(2*)®x2?(5) donc 2**=1%x4(5) soit 2**=4(5).

Comme 0<4<5, 2** a pour reste 4 dans la division euclidienne par 5.

par 5.
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Chapitre 2 — Théoremes de Bézout et de
Gauss

I - PGCD de deux entiers relatifs
a) Définition et propriétés de réduction

Exemple : Les diviseurs de 12 sont 1 ;2 ; 3;4; 6 ; 12 et leurs opposés.
Les diviseurs de — 9 sont 1 ; 3 ; 9 et leurs opposés.
Les diviseurs communs a — 9 et 12 sont donc 1 ; 3 et leurs opposés (— 1 et — 3).

Remarques :
e Pourtout a€Z, les diviseurs communs a 0 et a sont les diviseurs de a .

e Pourtout a€Z, les diviseurs communs a 1 et a sont—1 et 1.

Propriété et définition : Soient a et b deux entiers relatifs non tous les deux nuls.
L'ensemble des diviseurs communs a a et b admet un plus grand élément ; on I'appelle Plus
Grand Commun Diviseur de a et b et on le note PGCD(a ;b) .

Exemples : PGCD(—9;12)=3 ; PGCD(—1;45)=1 ; PGCD(0;—457)=457 ;
PGCD(100;75)=25 .

Preuve : Supposons que a#0 . L'ensemble des diviseurs communs de a et b est non vide puisqu'il
contient 1 et — 1. Cet ensemble est fini car il ne contient que des entiers compris entre —a et a .
Donc il admet un plus grand élément qui est le plus grand des diviseurs communs a a et b.

Remarques : Soient a et b deux entiers relatifs non tous les deux nuls.
+ PGCD(a;b)eN.
+ PGCD(a;b)=PGCD(b;a)=PGCD(|al;|b|) ; on se raméne en général au cas ot a et b
sont positifs.
+ PGCD(1;b)=1 et PGCD(0;b)=|b (avecici b#0).

Définition : a et b sont premiers entre eux si et seulement si PGCD(a;b)=1.
Exemple : PGCD(47;15) =1 donc 47 et 15 sont premiers entre eux.

Propriété : Soit D(a;b) I'ensemble des diviseurs communs a deux entiers relatifs a et b .
Alors D(a;b)=D(a—kXb;b) pour tout kEZ .

Preuve :
* Si d divise a et b,alors d divise a et a—kb pourtout k€Z ,donc d divise a—kb
et b.
e Sid divise a—kb et b,alors d divise (a—kb)+kb cest-a-dire a, donc d divise a
et b.

Conclusion : D(a;b)=D(a—kb;b) pour tout kEZ .
Exemple : D(63;75)=D(63;75—63)=D(63;12)=D(63—5x12;12)=D(3;12)={-3;-1;1;3}
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Propriété de réduction du PGCD : Soient a et b deux entiers relatifs non tous les deux nuls.
+  PGCD(a;b)=PGCD(a—kb;b) pour tout kEZ .
e Si 0<b<a, PGCD(a ;b) =PGCD(r;b) ou r est le reste de la division euclidienne de
a par b.
* Si b est un diviseur positif de a, PGCD(a;b)=b.

Preuve :
* C'est une conséquence immeédiate de la propriété précédente.
* Si O<b<a, on applique I'égalité précédente avec k=q, quotient de la division euclidienne
de a par b.
+ Si bla avec b>0, r=0 donc PGCD(a;b)=PGCD(0;b)=b .

b) I.'algorithme d'Euclide
Cet algorithme permet de déterminer le PGCD de deux entiers naturels non tous les deux nuls, en
utilisant la relation :

Si 0<b<a, PGCD(a;b)=PGCD(r;b) ou r est le reste de la division euclidienne de a par b .

Exemple : Cherchons PGCD(240;36) .

a = b X q + r
240 36 X 6 + 24
36 24 X 1 + 12
24 12 X 2 + 0

On déduit de ces relations que :
PGCD(240;36 )= PGCD(24;36)=PGCD(12;24)=PGCD(12;0)=12 .

Propriété (algorithme d'Euclide) :

Soient a et b deux entiers tels que 0<b<a.
L'algorithme suivant permet de calculer en un nombre fini d'étapes PGCD (a;b).
* Calculer le reste r de la division euclidienne de a par b.
* Tant que r#0 , remplacer a par b et b par r.
* Calculer le reste r de la division euclidienne de a par b.
* Fin Tant que.
* Retourner b.

Preuve : Ecrivons les divisions successives : a=b q,+r, avec 0<r,<b .

* Si ry=0, on s'arréte a cette premiére étape.

e Sir,#0,onremplace a par b et b par ry : b=ryq,+r; avec 0<r,<r,.

* Si r,;#0,onremplace b par r, et ry par Iy : I'y=r,q,+r, avec Or,<r,

e Si r,#0, onremplace I, par 'y et I'y par ', : I'/=r,q;+r; avec 0<r;<r, .
On construit ainsi une liste strictement décroissante 'y, 'y, ', ... Oril n'y a qu'un nombre fini
d'entiers entre 'y et 0. Cette liste est donc finie donc il existe k€N tel que r,#0 et r,,,=0.
Comme r,,=0, I'algorithme s'arréte. Il comporte bien un nombre fini d'étapes.
On a donc PGCD(a;b)=PGCD(r,;r,,,)=PGCD(r,;0)=r, (dernier reste non nul).
Exercice : Ecrire a la calculatrice un programme déterminant le PGCD de deux entiers naturels avec
l'algorithme d'Euclide.
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Propriété : Soient a et b deux entiers relatifs non tous les deux nuls.
Les diviseurs communs a a et b sont les diviseurs de leur PGCD.

Exemple : Déterminons les diviseurs communs a — 12 458 et 3 272.
Cherchons PGCD(12458;3272) :
12458=3272X3+2642
o 3272=2642X1+630
o 2642=630x4+122
e 630=122%x5+20
o  122=20X6+2
20=2X10+0
On a donc PGCD(—12458;3272)=2 donc les diviseurs communs d — 12 458 et 3 272 sont :
—2:-1;1;2

Preuve : Deux nombres entiers opposés ayant les mémes diviseurs, on peut supposer 0<b<a.
« Si b=0,alors a#0. D(a,b)=D(a) et PGCD(a;b)=a donc la propriété est vraie.
* Si b#0 et bla, D(a;b)=D(b) avec b=PGCD(a;b) donc la propriété est encore vraie.
e Si b#0 et bfa, avec les notations de la preuve de l'algorithme d'Euclide et la propriété on
a: D(a;b)=D(ry;b)=D(ry;r,)=...=D(r;r,.,,)=D(r,;0)=D(r,) avec
=PGCD(a;b) .

c) Autres propriétés du PGCD de deux entiers

Propriété d'homogénéité : Soient a et b deux entiers relatifs non tous les deux nuls.
Pour tout A €N, PGCD(Aa;\b)=\APGCD(a;b).

Preuve : Si a ou b estnul, ousi alb, le résultat est trivial.

Sinon, on suppose 0<b<a . La recherche de PGCD(\a;\b) alaide de I'algorithme d'Euclide
conduit a écrire des égalités qui sont celles de la recherche de PGCD(a;b) multipliées par A .
Pour le dernier reste non nul, on aura donc PGCD(ha;Ab)=APGCD(a;b).

Exemple : PGCD(150;100)=50 PGCD(3;2)=50x1=50.

Propriété caractéristique : Soient a et b deux entiers relatifs non tous les deux nuls et d un

entier naturel. d=PGCD(a;b)e (11):(11)(1' avec a' et b' premiers entre eux.
=ba

Preuve : Si d =PGCD(a;b),il existe a' et b' telsque a=da' et b=db".

Alors, PGCD(a;b)=PGCD(da';db')=d PGCD(a';b') par homogénéité, puisque d €IN".
Comme PGCD(a;b)=d , on en déduit que PGCD(a';b')=1 etdoncque a' et b’ sont
premiers entre eux.

Réciproquement, si a=da' et b=db' avec a' et b' premiers entre eux et d €N, alors d #0

car a et b sont non tous les deux nuls, donc par homogénéité,
PGCD(a;b)=d PGCD(a';b')=d x1=d .

Exemple : 90=9X10 et 40=4X10 avec 9 et 4 premiers entre eux donc PGCD(90;40)=10.
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II — Théoreme de Bézout

Propriétés : Soient a et b deux entiers relatifs non tous les deux nuls et d=PGC D(a;b).
1. Il existe u et v entiers relatifs tels que au+bv=d : c'est la relation de Bézout.
2. L'ensemble des entiers au+bv (avec u€Z , veZ) est I'ensemble des multiples de d .

Remarque : Il n'y a pas unicité du couple (u;v) tel que au+bv=d .

Preuve :

1. On utilise les notations de la démonstration de 1'algorithme d'Euclide.

De a=bqy+r, onobtient ry,=a—bgq,=auy+bv, avec u,=1 et v;=—q qui sont des entiers.

De b=r,q,*r,, on obtient r,=b—q,r;=b—(au,+bv,)q=au,+bv, avec u;=—u,q, et
v,=1-v,q, entiers.

Pas-a-pas, on exprime chaque reste comme combinaison linéaire entiére de a et b jusqu'a 7y,
c'est-a-dire d .

2. Soit n=au+bv avec u et v appartenanta Z .Comme d divise a et b, d divise n. Toute
combinaison linéaire de a et b est un multiple de d .

Réciproquement, si n est un multiple de d , il existe k€Z tel que n=kd . Or, il existe u et v
entiers tels que d =au+bv donc n=(ku)a+(kv)b .1l existe donc deux entiers u' et v' tels que
n=au'+bv'. Tout multiple de d est une combinaison linéaire entiére de a et b.

Exemple : Pour a=231,et b=165,0na:
o 231=165+66
o 165=66X2+33
e 66=33X2+0
Donc PGCD(231;165)=33. En utilisant les relations précédentes, on a :
e+ 33=165-66X%2
s 66=231-165
Donc 33=165—(231—165)X2=165—2X231+165x2=165X3+231x(—2) .
On remarque que I'on a aussi : 165X17+231X(—12)=33 .

Théoréme de Bézout : Soient a et b deux entiers relatifs.
a et b sont premiers entre eux si et seulement si il existe deux entiers relatifs u et v tels
que au+bv=1.

Preuve : Si a et b sont premiers entre eux, d =1 et d'apres la proposition précédente, il existe
uUeZ et ve€Z telsque au+bv=1.

Réciproquement, s'il existe u€EZ et vEZ tels que au+bv=1 alors un diviseur commun a a et
b divise 1, donc c'est soit 1 soit — 1 donc PGCD(a;b)ZI .

Exemples :
* a=4 et b=—9 sont premiers entre eux car 4><(—2)+9><1:1 .

* Deux entiers consécutifs sont toujours premiers entre eux, car pour n€Z. ,
nX(—1)+(n+1)x1=1.
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IIT — Théoreme de Gauss

Théoréeme de Gauss : Soient a, b et c trois entiers relatifs non nuls.
Si a divise bc etsi a est premier avec b, alors a divise c.

Exemple : 5 divise 75=3X25,5 et 3 sont premiers entre eux donc 5 divise 25.

Contre-exemple : Pour a=12 , b=6 et c=10, a n'est premier ni avec b, ni avec c.
a divise bc=60 , mais a ne diviseni b ni c.
L'hypothése a premier avec b est donc capitale.

Preuve : a divise bc donc il existe kE€Z tel que bc=ka .Comme a et b sont premiers entre
eux, il existe u et v entiers relatifs tels que au+bv=1.

En multipliant par ¢ cette relation, on obtient : acu+bcv=c, soit acu+kav=c soit
a(cu+kv)=c.Comme cu+kveZ, a divise c.

Corollaire du théoréme de Gauss : Si deux nombres premiers entre eux a et b divisent un
entier c, alors ab divise c.

Exemple : 5 divise 100, 4 divise 100. Comme 5 et 4 sont premiers entre eux, 5X4=20 divise 100.

Preuve : alc donc il existe k€Z tel que c=ka .Comme b est premier avec a et que blka,
alors d'aprés le théoréme de Gauss il existe IEZ tel que k=Ib.On adonc c=Iba,donc ablc.
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Chapitre 3 — Nombres premiers

I — Nombres premiers

Définition : Un nombre entier naturel est premier si et seulement s'il posséde exactement deux
diviseurs positifs : 1 et lui-méme.

Exemples :
» 2 est premier car ses seuls diviseurs positifs sont 1 et 2.

* 0O n'est pas premier car il possede une infinité de diviseurs positifs.
* 1 n'est pas premier car il a un seul diviseur positif : 1.

Exercice 1 : Dresser la liste des nombres premiers inférieurs a 50.

Remarques :
* Un entier supérieur a 2 qui n'est pas premier est dit composé.

* Si p estunnombre premier et n un entier, ou bien p divise n, oubien p et n sont
premiers entre eux, puisqu'ils n'ont que 1 comme diviseur positif commun.

Théoréme :
* Tout entier naturel supérieur ou égal a 2 admet un diviseur premier.
* Tout entier naturel n non premier supérieur a 2 admet un diviseur premier p
inférieur ou égal a yn .

Preuve : Soit n€IN, n=2.Si n est premier, il admet un diviseur premier : lui-méme.

Si n n'est pas premier, il admet un diviseur positif autre que lui-méme et 1.

On considere alors E , ensemble des diviseurs positif (autres que n et 1) de n.

D'apres la remarque précédente, E n'est pas vide. Il admet donc un plus petit élément, que 1'on note
p.

Supposons que p ne soit pas premier. Il existerait un diviseur positif d de p. d serait aussi
diviseur de n.Donc d serait un élément de E , ce qui contredit le fait que p soit le plus petit
élément de E . C'est absurde. Donc p est premier.

p est premier et divise n donc il existe g€IN tel que n=pq avec 1<qg<n.

Donc q estun diviseur de n (autre que n et 1) donc q€E et p<q puisque p est le plus petit
élément de E .

On a donc p2< pg= p2<n:> pg\/’yﬁ .

Propriété (test de primalité) : Soit n un entier naturel supérieur ou égal a 2. Si n n'est
divisible par aucun des nombres premiers inférieurs ou égaux a Y n, alors n est premier.

Preuve : Si n n'est pas premier, il admet un diviseur premier inférieur ou égal a | n .
Le test de primalité est la contraposée de cette proposition.
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Exemples :
»  Déterminons si 4559 est premier : \ 4559~67,52 .

On teste la divisibilité de 4559 par les nombres premiers inférieurs ou égaux a 67.
On remarque que 4559=47X97 donc 4559 n'est pas premier.

»  Déterminons si 4561 est premier : | 4561~67,54 .
On teste la divisibilité de 4561 par les nombres premiers inférieurs ou égaux a 67.
Aucune division ne fonctionne, donc 4561 est premier.

Exercice 2 : Ecrire un programme a la calculatrice qui détermine si un entier est premier ou non.
Théoréme : Il existe une infinité de nombres premiers.

Preuve par 1'absurde : Supposons que 1'ensemble des nombres premiers est fini.
Il n'existerait qu'un nombre n de nombres premiers : P,, P>, P3, ..., Pn.

n
Considérons le nombre N=p,X p,Xp;X...Xp +1  ce qui se note N:H p;+1.

i=1
Comme N= pl(p2><p3><--.>< pn)+1 : 1 est le reste de la division euclidienne de N par p;, donc
N n'est pas divisible par p;.
De méme, en effectuant les divisions euclidiennes par les autres nombres premiers p,, ..., P,, on
détermine que N n'est divisible par aucun nombre premier.
Donc N serait premier. Donc N serait 1'un des nombres p,, ..., P,, ce qui est faux. C'est
absurde.
Conclusion : I'ensemble des nombres premiers est infini.
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IT — Décomposition en facteurs premiers
Exemple : On peut écrire 800=8x4x25=2°x5> ot 2 et 5 sont des nombres premiers.

a) Existence et unicité d'une décomposition

Théoreme : Tout entier n=2 se décompose en un produit de nombres premiers. Cette
décomposition est unique a I'ordre des facteurs pres.

On peut donc écrire n= PT'P?Z--- sz ou P;, P»,..., Py sontdes nombres premiers deux a
deux distincts et O;, O,, ..., 0, sont des entiers naturels non nuls.

Preuve :
* Existence : Soit n=2 un entier. On sait d'aprés le premier théoréme du I qu'il admet un

diviseur premier p,.Onadonc n=p,;n, avec 1s<n;<n,
Si n,=1, alors n=p, et la propriété est démontrée.
Sinon, alors N, posséde un diviseur premier P, et on a donc n=p, p,n, ou 1<n,<n,,
On continue ainsi tant que le quotient 1n; est supérieur a 1.
On forme ainsi une liste d'entiers n;, Nn,,... strictement décroissante et minorée par 1.
Elle est donc finie, c'est-a-dire qu'a partir d'un certain rang m ona n,=1 et donc
n=p,p,..pP, oules p; sontdes nombres premiers non nécessairement distincts.
En regroupant les facteurs égaux on a la factorisation voulue.

*  Unicité : On suppose qu'un certain nombre premier p apparait avec I'exposant o.=>1 dans
une décomposition, et I'exposant 30 dans une autre ( =0 si le facteur n’apparait pas
dans cette décomposition).

Onaalors n=p“a=p’b, ol a et b sont des produits de nombres premiers distincts de
p.

Si a>B, p“"a=b,donc p divise b, ce qui contredit le fait que p ne fait pas partie des

facteurs de b .

Si a<p, a=p" “b, ce qui contredit le fait que p ne fait pas partie des facteurs de a .

Donc o=f . Ce qui garantit l'unicité de la factorisation.

k
Remarque : On peut noter n=] [ p,*.
i=1

Exercice 3 : Ecrire un programme a la calculatrice qui donne la décomposition en facteurs premiers
d'un entier.
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b) Diviseurs d'un entier naturel supérieur ou égal a 2

o r . Oy O Oy - oy . ' .
Propriété : Si p; P, ... P, estla décomposition en facteurs premiers d'un entier naturel n,
les diviseurs de n sont de la forme p;p?... p‘,}j ou 0<f,<a,,..., 0<f,<0,.

. By B By N

Preuve : Les nombres entiers de la forme p; p'2 p'k ou 0<B;<a,, ..., 0<B,<a, sontdes

.. s . — [T A Bx o =B a,—f, oL — P N
diviseurs de n . En effet, on peut écrire n—(p1 Dy'... Dy )>< Dy Py ... Py ou les exposants
o, —f sont positifs ou nuls.
Réciproquement, soit d un diviseur de n.Si p” divise d (avec p premier), alors p’ divise n.
L'unicité de la décomposition en facteurs premiers de n implique que le nombre pﬁ doit figurer
dans cette décomposition, et donc que p estl'undes p; et que 0<p<a,,

d est donc de la forme souhaitée.

Exemple : 24=2’%3 donc 24 a pour diviseurs les entiers 2°%3" on 0<a<3 (donc a=0,1,2
ou3)et 0SB <1 (donc =0 ou 1). On peut donc lister tous les diviseurs de 24 :

¢ 2'%3°=1

« 2°%3'=3
« 2Ix3°=2
: .« 2'%x3'=6
.« 2°x3'=4
: .« 2°x3'=12
.« 2°x3°=8
: .« 2’x3'=24

, . 0y O, oy . .s . ' .
Conséquence 1:Si p; p,..- P, estla décomposition en facteurs premiers d'un entier naturel
k

n , le nombre de diviseurs de n est (1+a1) (1+a2)...(1+ak)=]__[ (1+0t,.) .
i=1

Preuve : Un diviseur de n est de la forme p;' pgz.--p[ff ou 0<f,<a,,..., 0B, <a,.
Pour chaque p; avec 1<i<k, l'exposant peut prendre 1+, valeurs possibles.

Le nombre total de diviseurs est alors (1+a,)(1+a,)...(1+a,) , puisque I'unicité de la
décomposition en produit de facteurs premiers assure que ces diviseurs sont tous différents.

Conséquence 2 : Soient a et b deux entiers naturels supérieurs ou égaux a 2.
Le PGCD de a et b est égal au produit des facteurs premiers communs aux décompositions

de a et b, chacun d'eux étant affecté du plus petit exposant avec lequel il figure dans a et
b.

Exemple : 31500=2"X3’X5°X7 et 2733750=2x3"x5".
On a donc PGCD(31500 ;2733750 )=2x3°x5%=2250.
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Chapitre 4 — Matrices

I — Nature d'une matrice et vocabulaire

a) Définitions

Définition : Soient m et n deux entiers naturels non nuls.
Une matrice de dimension mXn est un tableau rectangulaire formé de m lignes et n
colonnes de nombres réels.

Remarque : Quand on parle de dimension (ou taille, ou format) mXn, on ne calcule pas le
produit !

2 2

Exemple : 0 —1 est une matrice de 2 lignes et 3 colonnes, donc de taille 2X3 .

(V8]
Wl

Définitions :
* Une matrice ligne est une matrice formée d'une seule ligne.
* Une matrice colonne est une matrice formée d'une seule colonne.
* Une matrice carrée d'ordre n est une matrice nXn.

1 2 3 5
5
- . 7 =5 0 0
Exemples : ( 2 6 1| estunematriceligne, | 1 | estune matrice colonne, i 7 8 6
> 2 0 0 1

est une matrice carrée d'ordre 4.

b) Ecriture générale d'une matrice

Une matrice A de taille mXn (avec meN" et n€IN") peut s'écrire sous cette forme :

(111 al2 aln
A=
n-1,1 dp-1,2 am-1n
am,l am,Z am n

m s'appellent les

- . J o s, s <I=
Les nombres a;; (notés parfois a; ; pour éviter les ambigiiités) avec .
’ 1< j<n

coefficients de la matrice A . On peut alors noter AZ(CII-J-)1<,-<,,,,1<J-<H .
Le coefficient a;; est donc le nombre placé ala i ™ ligne et la j ™ colonne.

Définition : Deux matrices seront égales si et seulement si elles ont le méme format et ont les
mémes coefficients aux mémes places.

Chapitre 4 — Matrices : 18/28



c) Matrices particuliéres

Définition : Dans une matrice carrée d'ordre n, les coefficients a,,, a,,, ..., a,, forment la
diagonale principale de la matrice.

Définition : Une matrice carrée est diagonale si et seulement si ses coefficients qui ne sont pas
sur la diagonale principale sont tous nuls.

5 0 0
Exemple: |0 —5 0| estune matrice diagonale.
0 0 1

Définition : L.a matrice unité d'ordre n (ou matrice identité d'ordre n ), notée I, , estla
matrice carrée d'ordre n contenant uniquement des 1 sur sa diagonale principale et des 0

ailleurs.
1 0
0 1)/

Définition : I.a matrice nulle d'ordre n, notée O, , est la matrice carrée d'ordre n dont tous
les coefficients sont nuls.

Exemple : [ ,=

IT — Opérations sur les matrices

a) Addition et multiplication par un réel

Définition : Si A=(G,~ j) et B=(b,- ,-) sont deux matrices de méme taille mXn , leur somme
A+B est définie par A+B :(a,-,-+b,-j)1<,~<m,1<,-<n .

On ne peut donc ajouter que des matrices de méme taille, et pour cela on ajoute les
coefficients situés a la méme place.

3 —4)\_
+ =

6 5
Définition : Soit A:(a,-,-)lg,-gm,lgjg,, une matrice et A€R . La matrice A A est la matrice

(kai j)lg,-gm, 1<j<n - Multiplier une matrice par un réel revient a multiplier tous les coefficients
par ce réel.

2 4
-1 10

243 4-4
~1+6 10+5

5 15

fs 0

Exemple : (

Remarques :
* On ade facon évidente A+B=B+A.

* Lesregles de priorité sont les mémes qu'avec les réels : 2 A+3 B désigne la matrice
(2A)+(3B).

*  Pour tous réels A et U, on peut montrer que A(wA)=(Au)A etA(A+B)=LA+AB.

*  On peut désormais définir la différence de deux matrices A et B de méme taille :
A—B=A+(-1)B.

*  Pour toute matrice carrée A d'ordre n,ona A+O,=A.
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b) Multiplication d'une matrice ligne par une matrice colonne

Définition : Soit n un entier naturel non nul.
Soient A=(01 ,-) une matrice ligne 1Xn et B=(b,,1) une matrice colonne nX1 (le nombre
de colonnes de A est donc égal au nombre de lignes de B).

bll
Alors AXB=(011 (112 ) aln)x b21 =((111Xb11+(112>(b21+...+(11,,Xb,,l .

b

nl

Remarque : On peut donc écrire AX BZ(Z a, b,,)
k=1

4
Exemple: (2 —3 1|x|2|=[2x4+(-3)x2+1x0/=(2).
0

c) Multiplication de deux matrices

Théoréme : Le produit A B de deux matrices A et B existe si et seulement si le nombre de
colonnes de A est égal au nombre de lignes de B .

Définition : Soient A une matrice de taille mXn et B une matrice de taille nX p.

Le produit AXB ou A B est la matrice de taille mX p dont le coefficient situé a la ligne i
et la colonne j est le coefficient du produit de la ligne i de A par la colonne j de B pour
1<i<m et 1<j<p.

Exemples :
* Le produit d'une matrice 2X3 par une matrice 3X3 est une matrice 2X3 :
1 2 =2 ! 20 —
c 0 2 X| -1 -1 2|=
2 0o 2
IXT+2X(=1)+(=2)x2 1x2+2X(=1)+(=2)x0 1X0+2x2+(—-2)x2 |_
5X1+0X(—1)+2%x2 5X2+0%(—1)+2x0 5X0 + 0X2+2X2
-5 0 0
9 10 4)°

* Le produit de deux matrices 2X2 est une matrice 2X2 : On peut au brouillon adopter
cette présentation. De plus, on ne détaille pas le calcul des sommes :

0 3

X \4 2

1 2 8 7
3 5 20 19

(le coefficient de la deuxieme ligne, premiére colonne du produit est le produit de la
deuxieme ligne de la premiere matrice par la premiere colonne de la deuxiéme matrice :
3X0+5X4=20).
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Propriétés admises : Soient A, B, C des matrices carrées d'ordre neIN".
+ Associativité : (AXB)XC=AX(BXC). Ce produit se note AXBXC ou ABC.
+ Distributivité : AX(B+C)=AB+AC et (A+B)XC=AC+BC.
*  Produit parunréel A : (MA)XB=ALAB et AX(AB)=AAB.
» Soit I, la matrice unité d'ordre n alors I,XA=A et AXI =A,

Remarque : La multiplication de matrices n'est pas commutative : en général, AX B#BXA (le
produit A B peut méme exister, alors que BA n'existe pas).

. 1 2 2 2
Exemples : Soient A= t B= .
xemples : Soien (_2 3)e (_1 0)

-2 10
-1 =2

0 2
-7 -4

Ona AB:( donc AB#BA.

mais BA:(

Remarque : Soient A, B et C des matrices carrées d'ordre nelN” .
Si AB=AC , on ne peut pas en déduire que B=C (on ne peut pas « simplifier » par A).

L

Exemple : (i ; X

2 1 20 -6 4 2 {0 7 20 -6

2]

10 —3) (2 1
et

Remarque : Soient A et B deux matrices carrées d'ordre neN’.
Si AB=0, , on ne peut pas en déduire que A=0, ou B=0, (on ne peut pas, comme pour les
nombres, utiliser le théoréme de 1'équation produit nulle).

2 1

1 -3
Exemple : (4 5

-2 6

X

0 0

=(0 0

d) Puissances entiéres positives de matrices

Définition : Soit A une matrice carrée d'ordre n€N’, on notera A>’=AXA, A’=AXAXA,
etc. Plus généralement, pour keIN", A" sera le produit de k matrices toutes égalesa A .
Par convention, on posera A'=1 ne

Exercice 1 : Soit A= } i) . Calculer A°, A', A%, A® et A*.
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III — Matrices inversibles et application aux systéemes

a) Matrices inversibles

Définition et propriété : Soit A une matrice carrée d'ordre n€NN .
On dit que A est inversible si et seulement si il existe une matrice carrée d'ordre n, notée

A7! telleque AXA™'=A"'XA=I,.
La matrice A" est nécessairement unique, et appelée matrice inverse de A .

Exemple : I =053 1)_j1 0 et 3 Il 1 —05_1 0 La matrice
“\=-2 1,5 4 2| \0 1 4 2 -2 1,5 0 1/°
1 -0,5 . . . 3 1
2 15 est donc inversible et son inverse est 4 ol

Preuve de l'unicité : Supposons que A possede deux inverses, notés B et B'.
Onadonc AB=I,, AB'=I,, BA=I,, B"A=I,. On peut donc écrire :
B'(AB)=B'I,=B'.Onaaussi (B'A)B=I,B=B.Comme B'(AB)=(B'A)B,ona B'=B.

b) Matrices inversibles d'ordre 2

b

d) .Leréel ad—bc est

Définition : Soit A une matrice carrée d'ordre 2. On a donc A=(z
appelé déterminant de la matrice A, et noté det(A) ou A.
,ona A=3X2—1X4=2,

Exemple : Pour i é

b . .
une matrice carrée d'ordre 2. Alors :

Théoreme : Soit A=( a
c d

+ Si A#0, A estinversible; on a A_1=%( d _b) .
—c a

* Si A=0, A n'est pas inversible.

Preuve :
e Si A#0, 1 existe. Soit p=Li|d -b . On a alors
A Al—¢
1 a b d —-b 1 ad-bc 0 1 0
AB=—1 X =1 _ =1,.
ad—bclc d (—c al ad-bc| 0 ad-bc| |0 1) 2

De méme, on vérifie que 1'on a aussi BA=1, donc B est l'inverse de A .
* Si A=0, démontrons par I'absurde que A n'est par inversible : on suppose que A admet

une inverse A' . Soit B=| ¢ ¢
—Cc a
BAA' :BI :B BA Ay: —C axa b XA':O ad—bC XA,:O
Ona B ) 2 et (BA) (—c al \c d 0 ad-bc 2

car ad—bc=0.
Comme B(AA')=(BA)A", on en déduit que B=0, etdonc c=a=0.
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~ . —b

C= .

De méme, soit d —b
ad—bc O

ad-bc 0

d -b
d —b

a b

XA'=
c d

Ona C(AA')=CI,=C et (CA)A'= X XA'=0,

car ad—bc=0.

Comme C(AA')=(CA)A", on en déduit que C=0, etdonc b=d=0.

On en déduit que A=0, , ce qui est absurde puisque O, n'est pas inversible — son produit
par n'importe quelle matrice carrée d'ordre 2 valant toujours O, , il ne peut égaler I, .
Donc A n'est pas inversible.

Exemple : Soit AZ(é 2) . A=1X6—-5X3=-9 donc A estinversible.
2
1 ( 6 —3): 3

Al=—
On a alors 9l 5 1

- W=

> _1
9 9

c) Application aux systémes linéaires

Exemple : On considere le systeme linéaire d'inconnues X;, X,, X3 suivant :
2x,—3x,+4 x;=—1
X, +Xx,—5x;=2 _ Onremarque qu'il peut s'écrire sous la forme d'un produit de matrices :
—4x,+3x,=6
2 -3 4 x| [—1
1 1 =5(Xx,|=| 2
-4 3 0 X, 6

2 -3 4 X —1
Onaalors AX=Y avec A=| 1 1 5|, X=|[x,| eeY=| 2
—4 3 0 X3 6

L'inconnue est alors la matrice colonne X .

Théoreme : Un systéeme linéaire a n inconnues X;, X,,..., X, :
a, x,ta;, x,t...+a, X, =y,

a, X +a,, X, +...+a, X = o oA
21717 22702 2,n Xn= Y2 peut s'écrire sous la forme A X=Y , ot A—(a,-j)ls,-gn,lgjs,,

an,1x1+an,2x2+"'+an,n Xn=yn

est une matrice carrée d'ordre n, X =( X,-) et Y=( y,-) sont des matrices colonnes nXx1 .
Si A est inversible, le systéme a alors une solution unique : X=A"'"Y .

Preuve : Si A est inversible, de AX =Y on déduit A (AX)=A"'Y dot (A"A)X=A""Y par
associativité. Onadonc X =A"'Y .

Réciproquement, si X =A 'Y ,alors AX=AA'Y=],Y=Y.

A"'Y est donc l'unique solution du systéme écrit sous forme matricielle.
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Chapitre 5 — Suites de matrices

I — Puissances d'une matrice

On rappelle que pour A matrice carrée d'ordre neN’ et pour k€N, A* sera le produit de k
matrices toutes égales a A , et que A°=1I,.

a) Cas des matrices diagonales

Propriété : Soit D une matrice diagonale. Pour tout neN’, D" estla matrice diagonale
obtenue en élevant a la puissance n tous les coefficients de D .

4
, alors D= > 0 =
0

(—1)

5

Exemple : Si D= 0 _01

625 0
0 1]

b) Cas des matrices triangulaires

Définition : Une matrice carrée est dite :
* triangulaire supérieure (respectivement inférieure) si tous ses éléments situés en-
dessous (respectivement au-dessus) de sa diagonale sont nuls ;
* Strictement triangulaire si elle est triangulaire avec des coefficients diagonaux nuls.

1 0 0 0 2 -6
Exemples: | —3 —5 0| esttriangulaire inférieure, |0 0 56 | est strictement
5 0o 2 0 0 0

triangulaire supérieure.
Propriétés : Les puissances d'une matrice triangulaire sont triangulaires de méme forme.
Les puissances d'une matrice strictement triangulaire d'ordre n sont nulles a partir de

I'exposant n .

Preuve : On traitera le cas n=3, pour M matrice strictement triangulaire supérieure :

0 a b 0 0 ac
Si M=|0 0 c|,ona M’=|0 0 o0 |, M?>=0, . On en déduit que pour n>3, M"=0,.
0O 0 O 0O 0 O

Définition : Une matrice carrée dont une puissance est nulle est dite nilpotente. Le plus petit
entier k pour lequel la puissance de la matrice est nulle est appelé indice de nilpotence.

On déduit de la propriété précédente que si M d'ordre n est strictement triangulaire, son
indice de nilpotence est inférieur ou égala n.

Remarque : Ces propriétés permettent de calculer des puissances d'une matrice en la décomposant
en somme de matrices particulieres ou en effectuant des calculs par blocs.
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IT — Diagonalisation d'une matrice carrée d'ordre 2

Définition : Une matrice carrée A est dite diagonalisable s'il existe une matrice carrée P
inversible et une matrice diagonale D tellesque A=PDP™'.

Théoréme : Si A=P D P, pour tout n€N, A"=pD"P".

Preuve : On raisonne par récurrence sur n€IN .
Soit P(n) lapropriété A"=pD"P".
+ Initialisation : Pour n=0, A°=1, et PD°P '=PI,P'=PP '=],. P(0) est vraie.
+ Hérédité : On suppose P(n) vraie. Onadonc A"=pD"P'.
A"™'=AA'=PDP'PD"P'=PDD'P '=PD""'P'. P(n+1) estvraie.
» Conclusion : Pour n€N, A"=pD"pP™*

Propriété : Une matrice A d'ordre 2 est diagonalisable si et seulement s'il existe deux réels A
et U (non nécessairement distincts) et deux matrices colonnes a coefficients réels non
proportionnelles V et W tellesque AV=AV et AW=pW.

Dans ce cas, A et U sont appelés les valeurs propres de la matrice A ;la matrice P=[V W ]
formée par la colonne des coefficients de V en premiére colonne et la colonne des coefficients

A0

P,
0

de W en seconde colonne est inversible et telle que A=P

Exemple : Soient A:(:j 61;) , V:(3) et W:(Z) )

-6

Ona AV=( )=—2V et AW:( 1)=—W . On en déduit que A est diagonalisable et a deux

valeurs propres : — 2 et — 1.

3 2
P=
En posant ( 11

-2 0 -1
A=P pP .
,onda ( 0 _1)

Preuve :

* Si A estdiagonalisable, il existe A et W et P :(?: 3) inversible tels que

A0 a b
W=

0 wu c) ot (d

déterminant est non nul, donc ad—bc#0, donc V et W ne sont pas proportionnels.

Par calcul,ona AV=AV et AW=uW .
* Réciproquement, on suppose qu'il existe deux réels A et Y et deux matrices colonnes a

P~' . Posons V=

A= P( .Comme P estinversible, son

coefficients réels non proportionnelles V= g et WZ( Z) telles que AV=AV et
AW=uWw
A0 a b
D= P= .
On pose 0 u et ¢ d

Le déterminant de P estnonnul car V et W ne sont pas proportionnelles, donc P est
inversible, et comme AV=AV et AW=uW ,ona AP=PD donc A=PDP'.
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III — Exemple de marche aléatoire (chaine de Markov)

N . . Année n Année n+1
Probleme : Dans un pays, deux opérateurs
de téléphonie mobile A et B se partagent le ]
marché. En 2010, A en contrdle 80 %, et B _pe
20 %. On a observé que, chaque année : /E,”"
* 60 % de la clientele de A lui reste B e
fidele, tandis que 40 % passe chez - T
B. e B
* 70 % de la clientele de B lui reste P
fidéle, tandis que 30 % passe chez <
A.
Ces proportions sont stables : il n'y a pas de \ iy
dabandon de consommation de produits. e T
produits. \' I
On veut chercher a connaitre la répartition B] ~H
des parts de marché au bout d'une longue =%
période. H‘

Modélisation : Pour tout n€IN, soient a, et b, les parts de marché de A et B en 2010+n .
L'année 2010+n+1, les clients de A sont constitués des 60 % de clients fideles a A de 2010+n et
des 30 % de clients de B de 2010+n qui ont changé d'opérateur.

L'année 2010+n+1, les clients de B sont constitués des 70 % de clients fideles a B de 2010+n et
des 40 % de clients de A de 2010+n qui ont changé d'opérateur.

a,,=0,6a,+03b, a,=0,8
On a donc pour tout n€IN, avec

b,.,,=04a,+0,7b, b,=0,2 "
—[4n ; L. . (0,6 0,3
1) Posons, pour n€N, P = NE Le systéme précédent se traduit par P,,,= 0.4 0.7 P,
pe e . 0,6 0,3 . . . . S s
Définition : I.a matrice 04 07 est appelée matrice de transition associée a la marche

aléatoire.

a,,,=0,6a,+0,3(1-a,) _
b,.,=0,7b,+0,4(1—b,)

03 0
0 03

a,,=0,4(1—b,)+0,7b,
b,,,=0,3b,+0,4

et E=( 0’3) .

2) Comme pour tout n€N a,+b,=1 ona

On en déduit que pour n€N, P,,,=DP +E avec D= 0.4

Définition : On appelle état stable de la marche aléatoire toute matrice S telle que
S=D S+E . En effet, si un des termes de la suite (P,,) est égal a S, tous les termes suivants
seront égauxa S .
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3) Onrésout S=DS+E : soit S=(g . On a donc
.3 3
al_ 0,3 0 |la + 0,3 - 1a=03a+0,3 _ 7 donc S= 7
b 0 03/\b] (04 b=0,3b+0,4 b—ﬁ 4
7 7
4) Onposepour neN, X,=P,—S . Comme S=DS+E ,ona:
Xn+1 P,..—~S=DP, YE- DS+E )=D(P,—-S)=DX,=X,,,=DX,.
,, est une suite géométrique de matrices de raison D et de premier terme
08-> =
X,=P,—S= soit X =
4 13
0,2—— -
7 35
03 0] % 03" 0 % 0’3nxg
X =D"X =" = =
On a donc pour n€N, X, 0 0 03| 13 0 03 13 - 13
35 35 ’ 35
0,3 x%+%
5) On a donc comme X ,=P,—S, P =
0,3"%| ——= +—
6) Comme —1<0,3<1,ona lim 0,3"=0.
13 .3_3 131.4_4
lim 0,3"X=—=+=== lim 0,3"X| —=—=|+===.
Oneen deduit que im 35777 A 35) 77

Donc lim P,=

n->+wo

NA NN w

3
Conclusion : La part de marché de A tend a se rapprocher de =5 celle de B tend a se rapprocher de
4

= -
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IV — Suites de matrices colonnes

Dans cette partie, U, est une matrice colonne @ m lignes, A une matrice carrée d'ordre m et

B une matrice colonnes @ m lignes, avec melN" .
On note (R) la relation U,,; =AU +B.

a) Expression du terme général

Une suite constante égale a S vérifie la relation (R) si et seulementsi S=AS+B.
Dans ce cas, en posant X ,=U,—S ona X,,,=U,,,—S=AU,+B—(AS+B)=A(U,-S)=AX,.

Théoréme : La suite (X,), oy définie par X, =U,—S vérifie X, ,,;=A X, et donc pour
neN, X,=A"X,, c'est-a-dire U,=A"(U,—S)+S.

Preuve : On utilise le fait que (X n)ne,N est géométrique de raison A .

b) Limite d'une suite de matrices

Une suite de matrices (U,,),,E,N (toutes de méme format) converge vers la matrice L si les
coefficients de U, convergent vers les coefficients de L correspondants.

En pratique, on exprime chaque coefficient en fonction de n, et on cherche la limite de chaque
coefficient.

Remarque : Si U,=A"U, etsi lim A"=L,alors lim U,=LU,.

n->+ow n=>+oo
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