
Cours de mathématiques 
Terminale scientifique

(enseignement de spécialité)

Chapitre 0 – Raisonnements.................................................................................................................3
I – Le raisonnement par l'absurde....................................................................................................3
II – Le raisonnement par récurrence................................................................................................4

Chapitre 1 – Divisibilité des entiers.....................................................................................................5
I – Divisibilité dans..........................................................................................................................5

a) Multiples et diviseurs d'un nombre entier relatif....................................................................5
b) Propriétés de la division dans l'ensemble des entiers relatifs.................................................5

II – Division euclidienne..................................................................................................................6
III – Congruences dans....................................................................................................................7

Chapitre 2 – Théorèmes de Bézout et de Gauss...................................................................................9
I – PGCD de deux entiers relatifs....................................................................................................9

a) Définition et propriétés de réduction......................................................................................9
b) L'algorithme d'Euclide..........................................................................................................10
c) Autres propriétés du PGCD de deux entiers.........................................................................11

II – Théorème de Bézout...............................................................................................................12
III – Théorème de Gauss................................................................................................................13

Chapitre 3 – Nombres premiers..........................................................................................................14
I – Nombres premiers....................................................................................................................14
II – Décomposition en facteurs premiers.......................................................................................16

a) Existence et unicité d'une décomposition.............................................................................16
b) Diviseurs d'un entier naturel supérieur ou égal à 2...............................................................17

Chapitre 4 – Matrices.........................................................................................................................18
I – Nature d'une matrice et vocabulaire.........................................................................................18

a) Définitions.............................................................................................................................18
b) Écriture générale d'une matrice............................................................................................18
c) Matrices particulières............................................................................................................19

II – Opérations sur les matrices.....................................................................................................19
a) Addition et multiplication par un réel...................................................................................19
b) Multiplication d'une matrice ligne par une matrice colonne................................................20
c) Multiplication de deux matrices............................................................................................20
d) Puissances entières positives de matrices.............................................................................21

III – Matrices inversibles et application aux systèmes..................................................................22
a) Matrices inversibles..............................................................................................................22
b) Matrices inversibles d'ordre 2...............................................................................................22
c) Application aux systèmes linéaires.......................................................................................23

Chapitre 5 – Suites de matrices..........................................................................................................24
I – Puissances d'une matrice..........................................................................................................24

a) Cas des matrices diagonales..................................................................................................24
b) Cas des matrices triangulaires..............................................................................................24

II – Diagonalisation d'une matrice carrée d'ordre 2.......................................................................25

 : 1/28



III – Exemple de marche aléatoire (chaine de Markov)................................................................26
IV – Suites de matrices colonnes...................................................................................................28

a) Expression du terme général.................................................................................................28
b) Limite d'une suite de matrices..............................................................................................28

 : 2/28



Chapitre 0 – Raisonnements

I – Le raisonnement par l'absurde

Principe     :   Le raisonnement par l'absurde consiste à démontrer qu'une proposition est vraie en 
supposant qu'elle est fausse, puis, en utilisant des raisonnements corrects, à aboutir à une absurdité 
logique. 
Comme les raisonnements sont rigoureux, la seule erreur est l'hypothèse de départ.

Exemple     historique :   Démontrons par l'absurde que √2∉ℚ  – c'est-à-dire que √2  ne peut pas 
s'écrire sous forme d'une fraction de nombres entiers.
Supposons que √ 2∈ℚ . 

Il existe donc p∈ℕ*  et q∈ℕ*  tels que √2=
p
q

 est irréductible.

On a alors 2=
p2

q2 ⇒2q2
= p2  (1)

On en déduit que p  est un nombre pair (s'il était impair, p2  serait impair...) donc il existe p '∈ℕ
tel que p=2 p ' .
On a donc p2

=4 p ' 2 . En remplaçant dans (1), on obtient 2 q2
=4 p ' 2

⇒q2
=2 p ' 2  (2)

On en déduit là-encore que q  est pair, il existe donc q '∈ℕ  tel que q=2q ' .

On en déduit que √2=
p
q
=

2 p '
2 q '

=
p '
q '

. Finalement on peut simplifier la fraction par 2, ce qui est 

absurde puisque 
p
q

 est irréductible.

Conclusion     :   L'hypothèse √2∈ℚ  est absurde, donc √ 2∉ℚ .

Exercice 1     :   Sur une île, il y a deux types d'habitants. 
Les menteurs qui mentent toujours et les honnêtes qui disent toujours la vérité. 
Un homme dit : « Je suis un menteur »
Démontrer par l'absurde que cet homme n'est pas un habitant de l'île. 

Exercice 2     :   Démontrer par l'absurde la proposition suivante :
Pour tous réels a>0  et b>0 , on a √a+b<√a+√b .
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II – Le raisonnement par récurrence

Principe     :   Le raisonnement par récurrence s'utilise pour démontrer une propriété vraie pour tout 
entier n⩾n0  avec n0∈ℕ  – c'est-à-dire que la propriété est vraie à partir du rang n0∈ℕ .
Il comporte deux étapes :
• Initialisation : On démontrer que la propriété est vraie au premier rang n0 .
• Hérédité : On démontre que si la propriété est vraie au rang n , alors elle est vraie au rang 

suivant n+1 .
Cela permet de vérifier que la propriété est vraie pour tout n⩾n0  :
• Elle est vraie pour n0  grâce à l'initialisation.
• Comme elle est vraie pour n0 , l'hérédité assure qu'elle est vraie au rang suivant n0+1 .
• Comme elle est vraie pour n0+1 , l'hérédité assure qu'elle est vraie au rang suivant n0+2 .
• Et ainsi de suite...

Illustration     :   Ce type de démonstration peut être illustré par une suite de dominos : on fait tomber un
domino – l'initialisation – et comme la chute d'un domino entraine la chute du domino suivant – 
l'hérédité – alors tous les dominos seront tombés à la fin.

Exemple     :   On a vu en classe de première que pour tout n∈ℕ , 0+1+2+…+n=
n (n+1)

2
, ce qui se 

note ∑
k=0

n

k=
n (n+1)

2
. Démontrons cette propriété par récurrence.

Soit P (n)  la propriété ∑
k=0

n

k=
n (n+1)

2
.

• Initialisation     :   Montrons P (0)  :

On a  ∑
k=0

0

k=0 , et 
0 (0+1)

2
=0  donc P (0)  est vraie.

• Hérédité     :   Supposons que P(n)  soit vraie : 0+1+2+…+n=
n (n+1)

2
 (1).

Montrons que P(n+1)  est alors vraie également.
Pour obtenir la somme souhaitée, on ajoute n+1  à chaque membre de (1) :

0+1+2+…+n+(n+1)=
n(n+1)

2
+n+1⇔∑

k=0

n+1

k=
n(n+1)

2
+

2(n+1)
2

⇔∑
k=0

n+1

k=
(n+1)(n+2)

2
P(n+1)  est donc vraie.

• Conclusion     :   Pour tout n∈ℕ , ∑
k=0

n

k=
n(n+1)

2
.

Exercice 3     :   Démontrer par récurrence que pour tout n∈ℕ , ∑
k=0

n

k2
=

n(n+1)(2 n+1)
6

.

Exercice 4     :   
Définition     :   Soient a∈ℤ  et b∈ℤ . On dit que a  divise b  (ou que b  est un multiple de a ) 
s'il existe k∈ℤ  tel que b=k a .
a) Démontrer par récurrence que pour tout n∈ℕ , 6 divise 7n

−1 .
b) Démontrer par récurrence que pour tout n∈ℕ , 3 divise n3

−n .
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Chapitre 1 – Divisibilité des entiers

Définitions     :   On note ℕ  l'ensemble des entiers naturels : ℕ={0;1 ;2 ;3;4 ;…}
On note ℤ  l'ensemble des entiers relatifs : ℤ={…;−4 ;−3 ;−2 ;−1;0 ;1 ;2;3 ;4 ;…}

I – Divisibilité dans ℤ

a) Multiples et diviseurs d'un nombre entier relatif

Définition     :   Soient a∈ℤ  et b∈ℤ . On dit que a  divise b  (ou que b  est un multiple de a ) 
s'il existe k∈ℤ  tel que b=k a . On note a∣b , et a∤b  dans le cas contraire.

Remarques     :  
• Pour tout a∈ℤ , 0×a=0  donc tout entier relatif a  divise 0.
• Tout entier relatif non nul b  possède un nombre fini de diviseurs : en effet, ses diviseurs 

sont en valeur absolue inférieurs ou égaux à ∣b∣ , les diviseurs appartiennent à
{−∣b∣ ;… ;−1 ;1 ;…;∣b∣} . b  a donc au plus 2∣b∣  diviseurs.

Exemple     :   L'ensemble des diviseurs dans ℤ  de 24 sont :
{−24 ;−12 ;−8 ;−6 ;−4 ;−3;−2;−1 ;1 ;2 ;3 ;4 ;6 ; 8 ;12 ;24 } .

Exercice     1 :   Écrire un algorithme qui donne les diviseurs dans ℕ  d'un entier naturel.
Sur Texas Instruments, on pourra utiliser les instructions « partDéc » et « partEnt » qui se trouvent
dans math - NUM. 
Sur Casio, on pourra utiliser l'instruction « Frac » qui se trouve dans OPTN - NUM.
Ces instructions donnent la partie décimale et la partie entière d'un nombre.

b) Propriétés de la division dans l'ensemble des entiers relatifs

a , b  et c  sont trois entiers relatifs non nuls.

Propriété     :   Si a∣b  et a∣c , alors pour tout u∈ℤ  et v∈ℤ , a∣u b+v c .

Preuve     :   Si a∣b , alors il existe k∈ℤ  tel que b=k a .
Si a∣b , alors il existe k '∈ℤ  tel que b=k ' a .
On en déduit que ub+v c=u k a+v k ' a=a(u k+v k ' )  donc a∣ub+v c  puisque u k+v k '∈ℤ .

Exercice résolu     :   Soit n∈ℤ  tel que n∣n+8 . Déterminons les valeurs possibles de n .
• n∣n  et n∣n+8  donc n∣n+8−n⇒n∣8 .
• Réciproquement, si n∣8 , comme n∣n , alors n∣n+8 .

Conclusion : n∣n+8⇔n∣8 . Les valeurs possibles pour n  sont donc −8 ;−4 ;−2 ;−1 ;1; 2 ;4 ;8 .

Propriété     (transitivité)     :   Si a∣b  et b∣c  alors a∣c .

Preuve     :   Si a∣b , alors il existe k∈ℤ  tel que b=k a . Si b∣c , alors il existe k '∈ℤ  tel que
c=k ' b . On a donc c=k ' k a  donc a∣c  puisque k k '∈ℤ .
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II – Division euclidienne

Théorème et définition     :   Soient a∈ℕ  et b∈ℕ  avec b≠0 .
Il existe un unique couple (q , r )  d'entiers naturels tels que a=bq+r  avec 0⩽r<b .
On dit que a  est le dividende, b  le diviseur, q  le quotient et r  le reste dans la division 
euclidienne de a  par b .

Remarques     :  
• Le mot « diviseur » n'a pas le même sens ici que dans la partie I.
• Il y a de multiples écritures de a  sous la forme bq+r  : par exemple, pour a=103  et

b=13 , on a 103=13×7+12=13×6+25=13×5+38 , etc.
Mais seule la première égalité est la relation de division euclidienne, car 0⩽12<13 .

• Lorsqu'on réalise une division « à la main », on réalise une division euclidienne.

Interprétation graphique     :   On encadre a  par deux multiples consécutifs de b .

Cette interprétation permet de comprendre comment on étend la division euclidienne à ℤ  : 
Soient a∈ℤ , b∈ℤ  avec b≠0 , il existe un unique couple (q , r )  tel que a=b q+r  avec
0⩽r<∣b∣ .

Propriété admise pour la preuve du théorème     :   On admettra le résultat suivant :
Toute partie non vide de ℕ  admet un plus petit élément.

Exemples et contre-exemples     :   
• 0 est le plus petit élément de ℕ .
• ℤ  n'a pas de plus petit élément.
• Dans ℝ , la propriété est fausse : l'intervalle ]−3; 8 ]  n'a pas de plus petit élément.

Preuve du théorème     :   

• Existence de q  et r  :
1er cas : Si 0⩽a<b , le couple (q , r )=(0,a )  convient.
2d cas : Si b⩽a , alors 1⩽b⩽a  car b  est non nul.

Soit M  l'ensemble des multiples de b  strictement supérieurs à a .
L'entier 2b×a  appartient à M  car b⩾1  donc 2b×a⩾2a>a .
Donc M  est une partie non vide de ℕ  et d'après la propriété précédente, il possède 
un plus petit élément, c'est-à-dire un multiple de b  strictement supérieur à a  tel que
le multiple précédent soit inférieur ou égal à a . Soit qb  ce multiple précédent.
Il existe donc un entier relatif q  tel que qb⩽a<(q+1)b .
Comme b⩽a , on a b⩽a<(q+1)b  donc 0<q  car b≠0  et donc q  est un entier 
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naturel.
Posons alors r=a−bq . Comme a , b  et q  sont des entiers, r  est un entier 
également.
De qb⩽a , on en déduit que r⩾0 , donc r  est un entier naturel.
De (q+1)b>a , on en déduit que r<b .

Dans les deux cas, on a trouvé un couple (q , r )  tel que a=b q+r  avec 0⩽r<b .

• Unicité du couple (q , r )  :
Supposons qu'il existe deux couples (q , r )  et (q ' , r ' )  tels que :
a=b q+r=b q '+r '  (1) avec 0⩽r<b  et 0⩽r '<b '  (2).
De (1), on déduit que b(q−q ' )=r '−r  avec q '−q  entier, donc r '−r  est un multiple de 
b . De (2), on déduit que −b<r '−r<b . Le seule multiple de b  strictement compris entre 
−b  et b  est 0, donc r '−r=0 , soir r '=r . Par (1), on en déduit que q '=q . Donc (q , r )  
est unique.

Exercice 2     :   Écrire à la calculatrice un programme qui effectue la division euclidienne de deux 
entiers.

III – Congruences dans ℤ

Propriété et définition : Soit c  un entier naturel non nul. Deux entiers relatifs a  et b  ont 
même reste dans la division euclidienne par c  si et seulement si a−b  est un multiple de c .
Si c'est le cas, on dit que a  et b  sont congrus modulo c  (ou que a  est congru à b  modulo
c ). On note a≡b(c)  ou a≡b(mod c )  ou a≡b[c ]  ou a≡b[mod c ] .

Exemples     :   Si on s'intéresse aux congruences modulo 4, on a :
5≡1(mod 4) , 6≡2(mod 4) , 7≡3(mod 4) , 8≡0 (mod 4) , 9≡1(mod 4) , …

Preuve de la propriété     :   On écrit les relations de division euclidienne par c  : a=cq+r , 0⩽r<c  et
b=c q+r ' , 0⩽r '<c .
• Supposons que r=r ' , alors a−b=c (q−q ')  avec q−q '  entier, donc a−b  est un 

multiple de c .
• Réciproquement, si a−b  est multiple de c , alors c∣a−b  et comme c∣c(q−q ' ) , alors par 

combinaison linéaire, c∣r−r ' . Comme −c<r−r '<c , il faut que r−r '=0 , soit r=r ' .

Exercice résolu     :   Démontrons que 214≡25(9) .
214−25=189=9×21  donc 214≡25(9) .

Remarques     :   Soient a  un entier relatif et c  un entier naturel non nul.
• a  est un multiple de c  si et seulement si a≡0 [c] .
• Les nombres congrus à a  modulo c  sont les nombres de la forme a+k c  avec k∈ℤ .
• r  est le reste de la division euclidienne de a  par c  si et seulement si on a a≡r (mod c)  et

0⩽r<c .

Propriété (transitivité)     :   Soient a , a '  et a ' '  des entiers relatifs et c  un entier naturel non 
nul.
Si a≡a ' (mod c)  et a '≡a ' ' (mod c) , alors a≡a ' ' (mod c ) .
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Propriétés (congruences et opérations)     :   Soient a , b , a ' , b '  des entiers relatifs et c  un 
entier naturel non nul. Si a≡b(mod c )  et a '≡b ' (mod c) , alors :
• a+a '≡b+b ' (mod c)  et a−a '≡b−b ' (mod c)
• a a '≡bb ' (mod c)
• an

≡bn
(mod c)  pour tout n∈ℕ* .

Preuve     :   Par hypothèse, il existe k∈ℤ  et k '∈ℤ  tels que a=b+k c  et a '=b '+k ' c .
• a+a '=b+b'+(k+k ' )c  avec k +k '  entier, donc a+a '≡b+b' (c) .
• a a '=bb '+(b k '+b ' k+k k ' c)c  avec b k '+b ' k+k k ' c  entier, donc a a '≡bb ' (c) .
• Pour la dernière relation, c'est une récurrence sur la relation précédente.

Remarques     :   Les règles opératoires sont les mêmes qu'avec une égalité classique, cependant :
• Il n'y a pas de division, ou de « simplification » : 22≡18(4)  mais 11 et 9 ne sont pas 

congrus modulo 4.
• Pas de propriété hasardeuse avec les puissances : 5≡1( 4 ) , mais 25

≡64≡0 (4)  et
21
≡2(4)  donc 25  et 21  ne sont pas congrus modulo 4.

Exercice résolu     :   Cherchons le reste de la division euclidienne de 2342  par 5.
22
=4 , 23

=8  et 24
=16  donc 22

≡4 (5) , 23
≡3(5)  et 24

≡1(5) .
342=4×85+2  donc 2342

≡24×85+2
≡(24

)
85
×22

(5)  donc 2342
≡185

×4(5)  soit 2342
≡4(5) .

Comme 0⩽4<5 , 2342  a pour reste 4 dans la division euclidienne par 5.
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Chapitre 2 – Théorèmes de Bézout et de
Gauss

I – PGCD de deux entiers relatifs

a) Définition et propriétés de réduction

Exemple     :   Les diviseurs de 12 sont 1 ; 2 ; 3 ; 4 ; 6 ; 12 et leurs opposés.
Les diviseurs de – 9 sont 1 ; 3 ; 9 et leurs opposés.
Les diviseurs communs à – 9 et 12 sont donc 1 ; 3 et leurs opposés (– 1 et – 3).

Remarques     :   
• Pour tout a∈ℤ , les diviseurs communs à 0 et a  sont les diviseurs de a .
• Pour tout a∈ℤ , les diviseurs communs à 1 et a  sont – 1 et 1.

Propriété et définition     :   Soient a  et b  deux entiers relatifs non tous les deux nuls. 
L'ensemble des diviseurs communs à a  et b  admet un plus grand élément ; on l'appelle Plus 
Grand Commun Diviseur de a  et b  et on le note PGCD(a ;b) .

Exemples     :   PGCD(−9 ;12)=3  ; PGCD(−1; 45)=1  ; PGCD(0 ;−457)=457  ;
PGCD(100 ;75 )=25 .

Preuve     :   Supposons que a≠0 . L'ensemble des diviseurs communs de a  et b est non vide puisqu'il
contient 1 et – 1. Cet ensemble est fini car il ne contient que des entiers compris entre – a  et a . 
Donc il admet un plus grand élément qui est le plus grand des diviseurs communs à a  et b .

Remarques     :   Soient a  et b  deux entiers relatifs non tous les deux nuls.
• PGCD (a ;b)∈ℕ .
• PGCD(a ;b)=PGCD(b ;a)=PGCD(∣a∣;∣b∣)  ; on se ramène en général au cas où a  et b  

sont positifs.
• PGCD(1 ;b)=1  et PGCD(0 ;b)=∣b∣  (avec ici b≠0 ).

Définition     :   a  et b  sont premiers entre eux si et seulement si PGCD (a ;b)=1 .

Exemple     :   PGCD(47 ;15)=1  donc 47 et 15 sont premiers entre eux.

Propriété     :   Soit D(a ; b)  l'ensemble des diviseurs communs à deux entiers relatifs a  et b .
Alors D(a ; b)=D (a−k×b ;b)  pour tout k∈ℤ .

Preuve     :   
• Si d  divise a  et b , alors d  divise a  et a−k b  pour tout k∈ℤ , donc d  divise a−k b

et b .
• Si d  divise a−k b  et b , alors d  divise (a−k b)+k b  c'est-à-dire a , donc d  divise a  

et b .
Conclusion : D(a ;b)=D(a−k b ;b)  pour tout k∈ℤ .

Exemple     :   D(63 ;75)=D(63;75−63)=D(63;12)=D(63−5×12; 12)=D(3 ;12)={−3;−1 ;1; 3 }
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Propriété de réduction du PGCD     :   Soient a  et b  deux entiers relatifs non tous les deux nuls.
• PGCD (a ;b)=PGCD(a−k b ;b)  pour tout k∈ℤ .
• Si 0<b⩽a , PGCD(a ;b)=PGCD(r ;b)  où r  est le reste de la division euclidienne de

a  par b .
• Si b  est un diviseur positif de a , PGCD(a ;b)=b .

Preuve     :  
• C'est une conséquence immédiate de la propriété précédente.
• Si 0<b⩽a , on applique l'égalité précédente avec k=q , quotient de la division euclidienne 

de a  par b .
• Si b∣a  avec b>0 , r=0  donc PGCD(a ;b)=PGCD(0 ;b)=b .

b) L'algorithme d'Euclide

Cet algorithme permet de déterminer le PGCD de deux entiers naturels non tous les deux nuls, en 
utilisant la relation :
Si 0<b⩽a , PGCD(a ;b)=PGCD(r ;b)  où r  est le reste de la division euclidienne de a  par b .

Exemple     :   Cherchons PGCD(240 ;36 ) .

a = b × q + r

240 = 36 × 6 + 24

36 = 24 × 1 + 12

24 = 12 × 2 + 0
On déduit de ces relations que :
PGCD(240 ;36 )=PGCD(24 ; 36 )=PGCD(12 ; 24)=PGCD(12; 0)=12 .

Propriété (algorithme d'Euclide)     :  
Soient a  et b  deux entiers tels que 0<b⩽a .
L'algorithme suivant permet de calculer en un nombre fini d'étapes PGCD(a ;b) .
• Calculer le reste r  de la division euclidienne de a  par b .
• Tant que r≠0 , remplacer a  par b  et b  par r .
• Calculer le reste r  de la division euclidienne de a  par b .
• Fin Tant que.
• Retourner b .

Preuve     :   Écrivons les divisions successives : a=b q0+r0  avec 0⩽r0<b . 
• Si r 0=0 , on s'arrête à cette première étape.
• Si r 0≠0 , on remplace a  par b  et b  par r 0  : b=r0 q1+r1  avec 0⩽r1<r0 .
• Si r 1≠0 , on remplace b  par r 0  et r 0  par r 1  : r 0=r 1q2+r 2  avec 0⩽r 2<r1 .
• Si r 2≠0 , on remplace r 0  par r 1  et r 1  par r 2  : r 1=r 2 q3+r 3  avec 0⩽r3<r2 .

On construit ainsi une liste strictement décroissante r 0 , r 1 , r 2 , … Or il n'y a qu'un nombre fini 
d'entiers entre r 0  et 0. Cette liste est donc finie donc il existe k∈ℕ  tel que r k≠0  et r k+ 1=0 .
Comme r k+1=0 , l'algorithme s'arrête. Il comporte bien un nombre fini d'étapes.
On a donc PGCD(a ;b)=PGCD(r k ; r k+1)=PGCD(rk ;0)=r k  (dernier reste non nul).
Exercice     :   Écrire à la calculatrice un programme déterminant le PGCD de deux entiers naturels avec
l'algorithme d'Euclide.
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Propriété     :   Soient a  et b  deux entiers relatifs non tous les deux nuls.
Les diviseurs communs à a  et b  sont les diviseurs de leur PGCD.

Exemple     :   Déterminons les diviseurs communs à – 12 458 et 3 272.
Cherchons PGCD(12458 ; 3272)  :
• 12458=3272×3+2642
• 3272=2642×1+630
• 2642=630×4+122
• 630=122×5+20
• 122=20×6+2
• 20=2×10+0

On a donc PGCD(−12458 ;3272)=2  donc les diviseurs communs à – 12 458 et 3 272 sont : 
– 2 ; – 1 ; 1 ; 2.

Preuve     :   Deux nombres entiers opposés ayant les mêmes diviseurs, on peut supposer 0⩽b⩽a .
• Si b=0 , alors a≠0 . D(a ,b)=D(a)  et PGCD(a ;b)=a  donc la propriété est vraie.
• Si b≠0  et b∣a , D(a ;b)=D(b)  avec b=PGCD(a ;b)  donc la propriété est encore vraie.
• Si b≠0  et b∤a , avec les notations de la preuve de l'algorithme d'Euclide et la propriété on 

a : D(a ;b)=D(r 0;b)=D(r0; r1)=…=D(r k ;r k+1)=D(r k ; 0)=D(rk )  avec
r k=PGCD(a ; b) .

c) Autres propriétés du PGCD de deux entiers

Propriété d'homogénéité     :   Soient a  et b  deux entiers relatifs non tous les deux nuls.
Pour tout λ∈ℕ* , PGCD(λ a ;λ b)=λ PGCD(a ; b) .

Preuve     :   Si a  ou b  est nul, ou si a∣b , le résultat est trivial.
Sinon, on suppose 0<b<a . La recherche de PGCD(λa ;λb)  à l'aide de l'algorithme d'Euclide 
conduit à écrire des égalités qui sont celles de la recherche de PGCD(a ;b)  multipliées par λ . 
Pour le dernier reste non nul, on aura donc PGCD(λa ;λb)=λ PGCD(a ;b) .

Exemple     :   PGCD(150 ;100 )=50 PGCD(3 ;2)=50×1=50 .

Propriété caractéristique     :   Soient a  et b  deux entiers relatifs non tous les deux nuls et d  un 

entier naturel. d=PGCD(a ;b)⇔ {a=d a '
b=ba '

 avec a '  et b '  premiers entre eux.

Preuve : Si d=PGCD(a ;b) , il existe a '  et b '  tels que a=d a '  et b=d b ' .
Alors, PGCD(a ;b)=PGCD(d a ' ;d b ' )=d PGCD(a ' ;b ')  par homogénéité, puisque d∈ℕ* .
Comme PGCD(a ;b)=d , on en déduit que PGCD(a ' ; b ' )=1  et donc que a '  et b '  sont 
premiers entre eux.
Réciproquement, si a=d a '  et b=d b '  avec a '  et b '  premiers entre eux et d∈ℕ , alors d≠0  
car a  et b  sont non tous les deux nuls, donc par homogénéité,
PGCD(a ;b)=d PGCD (a ' ;b ' )=d×1=d .

Exemple     :   90=9×10  et 40=4×10  avec 9 et 4 premiers entre eux donc PGCD(90 ;40)=10 .

Chapitre 2 – Théorèmes de Bézout et de Gauss : 11/28



II – Théorème de Bézout

Propriétés     :   Soient a  et b  deux entiers relatifs non tous les deux nuls et d=PGC D(a ; b) .
1. Il existe u  et v  entiers relatifs tels que au+b v=d  : c'est la relation de Bézout.
2. L'ensemble des entiers au+b v  (avec u∈ℤ , v∈ℤ ) est l'ensemble des multiples de d .

Remarque     :   Il n'y a pas unicité du couple (u ; v)  tel que a u+bv=d .

Preuve     :   
1. On utilise les notations de la démonstration de l'algorithme d'Euclide.
De a=b q0+r0  on obtient r 0=a−b q0=a u0+b v0  avec u0=1  et v0=−q  qui sont des entiers.
De b=r0 q1+r1 , on obtient r 1=b−q1 r1=b−(a u0+bv0)q1=au1+b v1  avec u1=−u0 q1  et
v1=1−v0 q1  entiers.
Pas-à-pas, on exprime chaque reste comme combinaison linéaire entière de a  et b  jusqu'à r k , 
c'est-à-dire d .
2. Soit n=a u+b v  avec u  et v  appartenant à ℤ . Comme d  divise a  et b , d  divise n . Toute
combinaison linéaire de a  et b  est un multiple de d .
Réciproquement, si n  est un multiple de d , il existe k∈ℤ  tel que n=k d . Or, il existe u  et v  
entiers tels que d=a u+b v  donc n=(k u)a+(k v )b . Il existe donc deux entiers u '  et v '  tels que
n=a u '+b v ' . Tout multiple de d  est une combinaison linéaire entière de a  et b .

Exemple     :   Pour a=231 , et b=165 , on a :
• 231=165+66
• 165=66×2+33
• 66=33×2+0

Donc PGCD(231;165)=33 . En utilisant les relations précédentes, on a :
• 33=165−66×2
• 66=231−165

Donc 33=165−(231−165)×2=165−2×231+165×2=165×3+231×(−2) .
On remarque que l'on a aussi : 165×17+231×(−12)=33 .

Théorème de Bézout     :   Soient a  et b  deux entiers relatifs.
a  et b  sont premiers entre eux si et seulement si il existe deux entiers relatifs u  et v  tels 
que au+b v=1 .

Preuve     :   Si a  et b  sont premiers entre eux, d=1  et d'après la proposition précédente, il existe
u∈ℤ  et v∈ℤ  tels que a u+bv=1 .
Réciproquement, s'il existe u∈ℤ  et v∈ℤ  tels que a u+b v=1 , alors un diviseur commun à a  et
b  divise 1, donc c'est soit 1 soit – 1 donc PGCD(a ;b)=1 .

Exemples     :   
• a=4  et b=−9  sont premiers entre eux car 4×(−2)+9×1=1 .
• Deux entiers consécutifs sont toujours premiers entre eux, car pour n∈ℤ ,

n×(−1)+(n+1)×1=1 .
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III – Théorème de Gauss

Théorème de Gauss     :   Soient a , b  et c  trois entiers relatifs non nuls.
Si a  divise b c  et si a  est premier avec b , alors a  divise c .

Exemple     :   5 divise 75=3×25 , 5 et 3 sont premiers entre eux donc 5 divise 25.

Contre-exemple     :   Pour a=12 , b=6  et c=10 , a  n'est premier ni avec b , ni avec c .
a  divise bc=60 , mais a  ne divise ni b  ni c .
L'hypothèse a  premier avec b  est donc capitale.

Preuve     :   a  divise bc  donc il existe k∈ℤ  tel que bc=k a . Comme a  et b  sont premiers entre 
eux, il existe u  et v  entiers relatifs tels que a u+b v=1 .
En multipliant par c  cette relation, on obtient : a cu+bc v=c , soit a cu+k a v=c  soit
a (c u+k v)=c . Comme c u+k v∈ℤ , a  divise c .

Corollaire du théorème de Gauss     :   Si deux nombres premiers entre eux a  et b  divisent un 
entier c , alors a b  divise c .

Exemple     :   5 divise 100, 4 divise 100. Comme 5 et 4 sont premiers entre eux, 5×4=20  divise 100.

Preuve     :   a∣c  donc il existe k∈ℤ  tel que c=k a . Comme b  est premier avec a  et que b∣k a , 
alors d'après le théorème de Gauss il existe l∈ℤ  tel que k=l b . On a donc c=l b a , donc a b∣c .
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Chapitre 3 – Nombres premiers

I – Nombres premiers

Définition     :   Un nombre entier naturel est premier si et seulement s'il possède exactement deux
diviseurs positifs : 1 et lui-même.

Exemples     :  
• 2 est premier car ses seuls diviseurs positifs sont 1 et 2.
• 0 n'est pas premier car il possède une infinité de diviseurs positifs.
• 1 n'est pas premier car il a un seul diviseur positif : 1.

Exercice     1 :   Dresser la liste des nombres premiers inférieurs à 50.

Remarques     :  
• Un entier supérieur à 2 qui n'est pas premier est dit composé.
• Si p  est un nombre premier et n  un entier, ou bien p  divise n , ou bien p  et n  sont 

premiers entre eux, puisqu'ils n'ont que 1 comme diviseur positif commun.

Théorème     :  
• Tout entier naturel supérieur ou égal à 2 admet un diviseur premier.
• Tout entier naturel n  non premier supérieur à 2 admet un diviseur premier p  

inférieur ou égal à √ n .

Preuve     :   Soit n∈ℕ , n⩾2 . Si n  est premier, il admet un diviseur premier : lui-même.
Si n  n'est pas premier, il admet un diviseur positif autre que lui-même et 1.
On considère alors E , ensemble des diviseurs positif (autres que n  et 1) de n .
D'après la remarque précédente, E  n'est pas vide. Il admet donc un plus petit élément, que l'on note
p .

Supposons que p  ne soit pas premier. Il existerait un diviseur positif d  de p . d  serait aussi 
diviseur de n . Donc d  serait un élément de E , ce qui contredit le fait que p  soit le plus petit 
élément de E . C'est absurde. Donc p  est premier.
p  est premier et divise n  donc il existe q∈ℕ  tel que n= p q  avec 1<q<n .

Donc q  est un diviseur de n  (autre que n  et 1) donc q∈E  et p⩽q  puisque p  est le plus petit 
élément de E .
On a donc p2

⩽ pq⇒ p2
⩽n⇒ p⩽√ n .

Propriété (test de primalité)     :   Soit n  un entier naturel supérieur ou égal à 2. Si n  n'est 
divisible par aucun des nombres premiers inférieurs ou égaux à √ n , alors n  est premier.

Preuve     :   Si n  n'est pas premier, il admet un diviseur premier inférieur ou égal à √ n .
Le test de primalité est la contraposée de cette proposition.

Chapitre 3 – Nombres premiers : 14/28



Exemples     :  
• Déterminons si 4559 est premier : √ 4559≈67,52 .

On teste la divisibilité de 4559 par les nombres premiers inférieurs ou égaux à 67.
On remarque que 4559=47×97  donc 4559 n'est pas premier.

• Déterminons si 4561 est premier : √ 4561≈67,54 .
On teste la divisibilité de 4561 par les nombres premiers inférieurs ou égaux à 67.
Aucune division ne fonctionne, donc 4561 est premier.

Exercice 2     :   Écrire un programme à la calculatrice qui détermine si un entier est premier ou non.

Théorème     :   Il existe une infinité de nombres premiers.

Preuve     par l'absurde :   Supposons que l'ensemble des nombres premiers est fini.
Il n'existerait qu'un nombre n  de nombres premiers : p1 , p2 , p3 , …, pn .

Considérons le nombre N= p1× p2×p3×…× pn+1 , ce qui se note N=∏
i=1

n

p i+1 .

Comme N= p1( p2×p3×…× pn)+1  : 1 est le reste de la division euclidienne de N  par p1 , donc
N  n'est pas divisible par p1 .

De même, en effectuant les divisions euclidiennes par les autres nombres premiers p2 , …, pn , on 
détermine que N  n'est divisible par aucun nombre premier.
Donc N  serait premier. Donc N  serait l'un des nombres p1 , …, pn , ce qui est faux. C'est 
absurde.
Conclusion : l'ensemble des nombres premiers est infini.
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II – Décomposition en facteurs premiers

Exemple     :   On peut écrire 800=8×4×25=25
×52  où 2 et 5 sont des nombres premiers.

a) Existence et unicité d'une décomposition

Théorème     :   Tout entier n⩾2  se décompose en un produit de nombres premiers. Cette 
décomposition est unique à l'ordre des facteurs près.
On peut donc écrire n= p1

α 1 p2
α 2… pk

α k  où p1 , p2 , …, pk  sont des nombres premiers deux à 
deux distincts et α1 , α2 , …, αk  sont des entiers naturels non nuls.

Preuve     :  
• Existence : Soit n⩾2  un entier. On sait d'après le premier théorème du I qu'il admet un 

diviseur premier p1 . On a donc n=p1 n1  avec 1⩽n1<n .
Si n1=1 , alors n=p1  et la propriété est démontrée.
Sinon, alors n1  possède un diviseur premier p2  et on a donc n=p1 p2 n2  où 1⩽n2<n1 .
On continue ainsi tant que le quotient n i  est supérieur à 1.
On forme ainsi une liste d'entiers n1 , n2 ,… strictement décroissante et minorée par 1.
Elle est donc finie, c'est-à-dire qu'à partir d'un certain rang m  on a nm=1  et donc
n=p1 p2 ... pm  où les p i  sont des nombres premiers non nécessairement distincts.
En regroupant les facteurs égaux on a la factorisation voulue.

• Unicité : On suppose qu'un certain nombre premier p  apparaît avec l'exposant α⩾1  dans 
une décomposition, et l'exposant β⩾0  dans une autre ( β=0  si le facteur n’apparaît pas 
dans cette décomposition).
On a alors n=pαa= pβb , où a  et b  sont des produits de nombres premiers distincts de
p .

Si α>β , pα−βa=b , donc p  divise b , ce qui contredit le fait que p  ne fait pas partie des
facteurs de b .
Si α<β , a= pβ−αb , ce qui contredit le fait que p  ne fait pas partie des facteurs de a .
Donc α=β . Ce qui garantit l'unicité de la factorisation.

Remarque     :   On peut noter n=∏
i=1

k

pi
αi . 

Exercice 3     :   Écrire un programme à la calculatrice qui donne la décomposition en facteurs premiers 
d'un entier.
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b) Diviseurs d'un entier naturel supérieur ou égal à 2

Propriété : Si p1
α1 p2

α 2… pk
αk  est la décomposition en facteurs premiers d'un entier naturel n , 

les diviseurs de n  sont de la forme p1
β1 p2

β2… pk
βk  où 0⩽β1⩽α1 , …, 0⩽βk⩽αk .

Preuve     :   Les nombres entiers de la forme p1
β1 p2

β2 … pk
βk  où 0⩽β1⩽α1 , …, 0⩽βk⩽αk  sont des 

diviseurs de n . En effet, on peut écrire n=( p1
β1 p2

β2… pk
βk)× p1

α1−β1 p2
α2−β2… pk

α k−βk  où les exposants
αi−βi  sont positifs ou nuls.
Réciproquement, soit d  un diviseur de n . Si pβ  divise d  (avec p  premier), alors pβ  divise n .
L'unicité de la décomposition en facteurs premiers de n  implique que le nombre pβ  doit figurer 
dans cette décomposition, et donc que p  est l'un des p i  et que 0⩽β⩽αi .
d  est donc de la forme souhaitée.

Exemple     :   24=23
×3  donc 24 a pour diviseurs les entiers 2α×3β  où 0⩽α⩽3  (donc α=0 , 1, 2 

ou 3) et 0⩽β⩽1  (donc β=0  ou 1). On peut donc lister tous les diviseurs de 24 :

• 20
×30

=1

• 20
×31

=3

• 21
×30

=2

• 21
×31

=6

• 22
×30

=4

• 22
×31

=12

• 23
×30

=8

• 23
×31

=24

Conséquence     1 :   Si p1
α1 p2

α 2… pk
αk  est la décomposition en facteurs premiers d'un entier naturel

n , le nombre de diviseurs de n  est (1+α1) (1+α2)…(1+αk)=∏
i=1

k

(1+αi) .

Preuve     :   Un diviseur de n  est de la forme p1
β1 p2

β2 … pk
βk  où 0⩽β1⩽α1 , …, 0⩽βk⩽αk .

Pour chaque p i  avec 1⩽i⩽k , l'exposant peut prendre 1+αi  valeurs possibles.
Le nombre total de diviseurs est alors (1+α1)(1+α2)…(1+αk) , puisque l'unicité de la 
décomposition en produit de facteurs premiers assure que ces diviseurs sont tous différents.

Conséquence 2     :   Soient a  et b  deux entiers naturels supérieurs ou égaux à 2.
Le PGCD de a  et b  est égal au produit des facteurs premiers communs aux décompositions 
de a  et b , chacun d'eux étant affecté du plus petit exposant avec lequel il figure dans a  et 
b .

Exemple     :   31500=22
×32

×53
×7  et 2733750=2×37

×54 .
On a donc PGCD(31500 ;2733750 )=2×32

×53
=2250 .
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Chapitre 4 – Matrices

I – Nature d'une matrice et vocabulaire

a) Définitions

Définition     :   Soient m  et n  deux entiers naturels non nuls.
Une matrice de dimension m×n  est un tableau rectangulaire formé de m  lignes et n  
colonnes de nombres réels.

Remarque     :   Quand on parle de dimension (ou taille, ou format) m×n , on ne calcule pas le 
produit !

Exemple     :   (
2 2 3,5

0 − 1
8
3 )  est une matrice de 2 lignes et 3 colonnes, donc de taille 2×3 .

Définitions     :  
• Une matrice ligne est une matrice formée d'une seule ligne.
• Une matrice colonne est une matrice formée d'une seule colonne.
• Une matrice carrée d'ordre n  est une matrice n×n .

Exemples     :   (2 6 1 )  est une matrice ligne, (
5
1
5 )  est une matrice colonne, (

1 2 3 5
7 − 5 0 0
4 7 8 6
2 0 0 1

)  

est une matrice carrée d'ordre 4.

b) Écriture générale d'une matrice

Une matrice A  de taille m×n  (avec m∈ℕ*  et n∈ℕ* ) peut s'écrire sous cette forme :

A=(
a11 a12 … a1n

… … … …

am−1, 1 am− 1,2 … am− 1,n

am ,1 am , 2 … am ,n
) .

Les nombres a i j  (notés parfois a i , j  pour éviter les ambigüités) avec {1⩽i⩽m
1⩽ j⩽n

 s'appellent les 

coefficients de la matrice A . On peut alors noter A=(a i j)1⩽i⩽m, 1⩽ j⩽n .
Le coefficient a i j  est donc le nombre placé à la i ième ligne et la j ième colonne.

Définition     :   Deux matrices seront égales si et seulement si elles ont le même format et ont les 
mêmes coefficients aux mêmes places.
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c) Matrices particulières

Définition     :   Dans une matrice carrée d'ordre n , les coefficients a1 1 , a22 ,  …, an n  forment la
diagonale principale de la matrice.

Définition     :   Une matrice carrée est diagonale si et seulement si ses coefficients qui ne sont pas 
sur la diagonale principale sont tous nuls.

Exemple     :   (
5 0 0
0 − 5 0
0 0 1 )  est une matrice diagonale.

Définition     :   La matrice unité d'ordre n  (ou matrice identité d'ordre n ), notée I n , est la 
matrice carrée d'ordre n  contenant uniquement des 1 sur sa diagonale principale et des 0 
ailleurs.

Exemple     :   I 2=( 1 0
0 1 ) .

Définition     :   La matrice nulle d'ordre n , notée On , est la matrice carrée d'ordre n  dont tous 
les coefficients sont nuls.

II – Opérations sur les matrices

a) Addition et multiplication par un réel

Définition     :   Si A=(a i j)  et B=(bi j)  sont deux matrices de même taille m×n , leur somme
A+B  est définie par A+B=(a i j+b i j)1⩽i⩽m , 1⩽ j⩽n .

On ne peut donc ajouter que des matrices de même taille, et pour cela on ajoute les 
coefficients situés à la même place.

Exemple     :   ( 2 4
− 1 10 )+(

3 − 4
6 5 )=( 2 + 3 4 − 4

− 1 + 6 10 + 5 )=(
5 0
5 15 ) .

Définition     :   Soit A=(a i j)1⩽i⩽m ,1⩽ j⩽n  une matrice et λ∈ℝ . La matrice λ A  est la matrice
(λa i j)1⩽i⩽m , 1⩽ j⩽n . Multiplier une matrice par un réel revient à multiplier tous les coefficients 
par ce réel.

Remarques     :  
• On a de façon évidente A+B=B+A .
• Les règles de priorité sont les mêmes qu'avec les réels : 2 A+3 B  désigne la matrice

(2 A)+(3B) .
• Pour tous réels λ  et μ , on peut montrer que λ (μ A)=(λμ)A  et λ (A+B)=λ A+λ B .
• On peut désormais définir la différence de deux matrices A  et B  de même taille :

A−B=A+(−1)B .
• Pour toute matrice carrée A  d'ordre n , on a A+On=A .
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b) Multiplication d'une matrice ligne par une matrice colonne

Définition     :   Soit n  un entier naturel non nul.
Soient A=(a1 j)  une matrice ligne 1×n  et B=(bn1)  une matrice colonne n×1  (le nombre 
de colonnes de A  est donc égal au nombre de lignes de B ).

Alors A×B=( a11 a12 … a1n)×(
b11

b21

…

bn1
)=( a11×b11+a12×b21+...+a1 n×bn1 ) .

Remarque     :   On peut donc écrire A×B=(∑
k=1

n

a1k bk 1)

Exemple     :   (2 − 3 1 )×(
4
2
0 )=( 2×4+(−3)×2+1×0 )=(2) .

c) Multiplication de deux matrices

Théorème     :   Le produit A B  de deux matrices A  et B  existe si et seulement si le nombre de 
colonnes de A  est égal au nombre de lignes de B .

Définition     :   Soient A  une matrice de taille m×n  et B  une matrice de taille n× p .
Le produit A×B  ou A B  est la matrice de taille m× p  dont le coefficient situé à la ligne i  
et la colonne j  est le coefficient du produit de la ligne i  de A  par la colonne j  de B  pour
1⩽i⩽m  et 1⩽ j⩽p .

Exemples     :   
• Le produit d'une matrice 2×3  par une matrice 3×3  est une matrice 2×3  :

( 1 2 − 2
5 0 2 )×(

1 2 0
− 1 − 1 2
2 0 2 )=

( 1×1 + 2×(− 1) + (− 2)×2 1×2 + 2×(− 1) + (− 2)×0 1×0 + 2×2 + (− 2)×2
5×1 + 0×(− 1) + 2×2 5×2 + 0×(− 1) + 2×0 5×0 + 0×2 + 2×2 )=

( − 5 0 0
9 10 4 ) .

• Le produit de deux matrices 2×2  est une matrice 2×2  : On peut au brouillon adopter 
cette présentation. De plus, on ne détaille pas le calcul des sommes : 

              
× ( 0 3

4 2 )
( 1 2
3 5 )  ( 8 7

20 19 )  

(le coefficient de la deuxième ligne, première colonne du produit est le produit de la 
deuxième ligne de la première matrice par la première colonne de la deuxième matrice :
3×0+5×4=20 ).
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Propriétés admises     :   Soient A , B , C  des matrices carrées d'ordre n∈ℕ* .
• Associativité : (A×B)×C=A×(B×C ) . Ce produit se note A×B×C  ou A B C .
• Distributivité : A×(B+C )=A B+AC  et (A+B)×C=AC+BC .
• Produit par un réel λ  : (λ A)×B=λ A B  et A×(λ B)=λ A B .
• Soit I n  la matrice unité d'ordre n  alors I n×A=A  et A× I n=A .

Remarque     :   La multiplication de matrices n'est pas commutative : en général, A×B≠B×A  (le 
produit A B  peut même exister, alors que B A  n'existe pas).

Exemples     :    Soient A=( 1 2
− 2 3 )  et B=( 2 2

− 1 0 ) .

On a A B=( 0 2
− 7 − 4 )  mais B A=( − 2 10

− 1 − 2 )  donc A B≠B A .

Remarque     :   Soient A , B  et C  des matrices carrées d'ordre n∈ℕ* .
Si A B=AC , on ne peut pas en déduire que B=C  (on ne peut pas « simplifier » par A ).

Exemple     :   ( 2 1
4 2 )×(

4 −2
2 1 )=(

10 −3
20 −6 )  et ( 2 1

4 2)×(
5 −5
0 7 )=(

10 −3
20 −6) .

Remarque     :   Soient A  et B  deux matrices carrées d'ordre n∈ℕ* .
Si A B=On , on ne peut pas en déduire que A=O n  ou B=On  (on ne peut pas, comme pour les 
nombres, utiliser le théorème de l'équation produit nulle).

Exemple     :   ( 2 1
4 2)×(

1 −3
−2 6 )=(

0 0
0 0) .

d) Puissances entières positives de matrices

Définition     :   Soit A  une matrice carrée d'ordre n∈ℕ* , on notera A2
=A×A , A3

=A×A×A ,
etc. Plus généralement, pour k∈ℕ* , Ak  sera le produit de k  matrices toutes égales à A .
Par convention, on posera A0

=I n .

Exercice 1     :   Soit A=( 1 2
1 1) . Calculer A0 , A1 , A2 , A3  et A4 .
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III – Matrices inversibles et application aux systèmes

a) Matrices inversibles

Définition     et propriété :   Soit A  une matrice carrée d'ordre n∈ℕ* .
On dit que A  est inversible si et seulement si il existe une matrice carrée d'ordre n , notée
A−1  telle que A×A−1

=A−1
×A=I n .

La matrice A−1  est nécessairement unique, et appelée matrice inverse de A .

Exemple     :   ( 1 −0,5
−2 1,5 )×(

3 1
4 2)=(

1 0
0 1)  et ( 3 1

4 2)×(
1 −0,5
−2 1,5 )=(

1 0
0 1) . La matrice

( 1 −0,5
−2 1,5 )  est donc inversible et son inverse est ( 3 1

4 2) .

Preuve de l'unicité     :   Supposons que A  possède deux inverses, notés B  et B ' .
On a donc A B= I n , A B '=I n , B A= I n , B ' A=I n . On peut donc écrire : 
B ' (A B)=B ' I n=B ' . On a aussi (B ' A)B=I n B=B . Comme B ' (A B)=(B ' A)B , on a B '=B .

b) Matrices inversibles d'ordre 2

Définition     :   Soit A  une matrice carrée d'ordre 2. On a donc A=( a b
c d ) . Le réel a d−b c  est

appelé déterminant de la matrice A , et noté det (A)  ou Δ .

Exemple     :   Pour ( 3 1
4 2) , on a Δ=3×2−1×4=2 .

Théorème     :   Soit A=( a b
c d )  une matrice carrée d'ordre 2. Alors :

• Si Δ≠0 , A  est inversible ; on a A−1
=

1
Δ ( d −b
−c a ) .

• Si Δ=0 , A  n'est pas inversible.

Preuve     :   

• Si Δ≠0 , 1
Δ

 existe. Soit B=
1
Δ ( d −b
−c a ) . On a alors

A B=
1

a d−bc (
a b
c d )×(

d −b
−c a )=

1
a d−b c (

ad – bc 0
0 a d –b c)=(

1 0
0 1)=I 2 .

De même, on vérifie que l'on a aussi B A= I 2  donc B  est l'inverse de A .
• Si Δ=0 , démontrons par l'absurde que A  n'est par inversible : on suppose que A  admet 

une inverse A ' . Soit B=(−c a
−c a) .

On a B(A A' )=B I 2=B  et (B A)A'=((−c a
−c a)×(

a b
c d ))×A'=( 0 a d – b c

0 a d−b c)×A'=O 2  

car a d−b c=0 .
Comme B(A A' )=(B A) A' , on en déduit que B=O2  et donc c=a=0 .
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De même, soit C=( d −b
d −b) .

On a C (A A ' )=C I 2=C  et (C A) A'=(( d −b
d −b)×(

a b
c d ))×A '=( a d−bc 0

ad – bc 0)×A '=O2  

car a d−b c=0 .
Comme C (A A ' )=(C A)A' , on en déduit que C=O 2  et donc b=d=0 .
On en déduit que A=O2 , ce qui est absurde puisque O2  n'est pas inversible – son produit 
par n'importe quelle matrice carrée d'ordre 2 valant toujours O2 , il ne peut égaler I 2 .
Donc A  n'est pas inversible.

Exemple     :   Soit A=( 1 3
5 6 ) . Δ=1×6−5×3=−9  donc A  est inversible.

On a alors A−1
=

1
−9 (

6 −3
−5 1 )=(

−
2
3

1
3

5
9

−
1
9
) .

c) Application aux systèmes linéaires

Exemple     :   On considère le système linéaire d'inconnues x1 , x2 , x3  suivant :

{
2 x1−3 x2+4 x3=−1

x1+ x2−5 x3= 2
−4 x1+3 x2= 6

. On remarque qu'il peut s'écrire sous la forme d'un produit de matrices :

(
2 −3 4
1 1 −5
−4 3 0 )×(

x1

x2

x3
)=(

−1
2
6 ) .

On a alors A X=Y  avec A=(
2 −3 4
1 1 −5
−4 3 0 ) , X=(

x1

x2

x3
)  et Y=(

−1
2
6 ) .

L'inconnue est alors la matrice colonne X .

Théorème     :   Un système linéaire à n  inconnues x1 , x2 , …, x n  :

{
a11 x1+a12 x2+…+a1 ,n xn= y1

a21 x1+a22 x2+…+a2 ,n xn= y2

…
an ,1 x1+an , 2 x2+…+an ,n xn= y n

 peut s'écrire sous la forme A X=Y , où A=(a i j)1⩽i⩽n ,1⩽ j⩽n  

est une matrice carrée d'ordre n , X=( x i )  et Y=( y i )  sont des matrices colonnes n×1 .
Si A  est inversible, le système a alors une solution unique : X=A−1 Y .

Preuve     :   Si A  est inversible, de A X=Y  on déduit A−1
(A X )=A−1 Y  d'où (A−1 A) X=A−1Y  par 

associativité. On a donc X=A−1Y .
Réciproquement, si X=A−1Y , alors A X=A A−1Y=I nY=Y .

A−1Y  est donc l'unique solution du système écrit sous forme matricielle.
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Chapitre 5 – Suites de matrices

I – Puissances d'une matrice

On rappelle que pour A   matrice carrée d'ordre n∈ℕ*  et pour k∈ℕ* , A k  sera le produit de k  
matrices toutes égales à A , et que A0

=I n .

a) Cas des matrices diagonales

Propriété     :   Soit D  une matrice diagonale. Pour tout n∈ℕ* , Dn  est la matrice diagonale 
obtenue en élevant à la puissance n  tous les coefficients de D .

Exemple     :   Si D=( 5 0
0 − 1 ) , alors D4

=( 5
4 0

0 (− 1)4 )=( 625 0
0 1 ) .

b) Cas des matrices triangulaires

Définition     :   Une matrice carrée est dite :
• triangulaire supérieure (respectivement inférieure) si tous ses éléments situés en-

dessous (respectivement au-dessus) de sa diagonale sont nuls ;
• Strictement triangulaire si elle est triangulaire avec des coefficients diagonaux nuls.

Exemples     :   (
1 0 0
− 3 − 5 0
5 0 2 )  est triangulaire inférieure, (

0 2 − 6
0 0 56
0 0 0 )  est strictement 

triangulaire supérieure.

Propriétés     :   Les puissances d'une matrice triangulaire sont triangulaires de même forme.
Les puissances d'une matrice strictement triangulaire d'ordre n  sont nulles à partir de 
l'exposant n .

Preuve      :   On traitera le cas n=3 , pour M  matrice strictement triangulaire supérieure :

Si M=(
0 a b
0 0 c
0 0 0 ) , on a M 2

=(
0 0 a c
0 0 0
0 0 0 ) , M 3

=O3 . On en déduit que pour n⩾3 , M n
=O 3 .

Définition     :   Une matrice carrée dont une puissance est nulle est dite nilpotente. Le plus petit 
entier k  pour lequel la puissance de la matrice est nulle est appelé indice de nilpotence.
On déduit de la propriété précédente que si M  d'ordre n  est strictement triangulaire, son 
indice de nilpotence est inférieur ou égal à n .

Remarque     :   Ces propriétés permettent de calculer des puissances d'une matrice en la décomposant 
en somme de matrices particulières ou en effectuant des calculs par blocs.
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II – Diagonalisation d'une matrice carrée d'ordre 2

Définition     :   Une matrice carrée A  est dite diagonalisable s'il existe une matrice carrée P  
inversible et une matrice diagonale D  telles que A=P D P−1 .

Théorème     :   Si A=P D P−1 , pour tout n∈ℕ , An
=P Dn P−1 .

Preuve     :   On raisonne par récurrence sur n∈ℕ .
Soit P (n)  la propriété An

=P D n P−1 .
• Initialisation     :   Pour n=0 , A0

= I 2  et P D0 P−1
=P I 2 P−1

=P P−1
=I 2 . P (0)  est vraie.

• Hérédité     :   On suppose P (n)  vraie. On a donc An
=P Dn P−1 .

An+1
=A An

=P D P−1 P Dn P−1
=P D Dn P−1

=P Dn+1 P−1 . P (n+1)  est vraie.
• Conclusion     :   Pour n∈ℕ , An

=P Dn P−1

Propriété     :   Une matrice A  d'ordre 2 est diagonalisable si et seulement s'il existe deux réels λ
et μ  (non nécessairement distincts) et deux matrices colonnes à coefficients réels non 
proportionnelles V  et W  telles que A V=λV  et A W=μW .
Dans ce cas, λ  et μ  sont appelés les valeurs propres de la matrice A  ; la matrice P=[V W ]  
formée par la colonne des coefficients de V  en première colonne et la colonne des coefficients 

de W  en seconde colonne est inversible et telle que A=P ( λ 0
0 μ ) P−1 .

Exemple     :   Soient A=(−4 6
−1 1) , V=( 3

1)  et W=( 21) .

On a A V=(−6
−2)=−2V  et A W=(−2

−1)=−W . On en déduit que A  est diagonalisable et a deux 

valeurs propres : – 2 et – 1. 

En posant P=( 3 2
1 1) , on a A=P(−2 0

0 −1) P−1 .

Preuve     :  

• Si A  est diagonalisable, il existe λ  et μ  et P=( a b
c d )  inversible tels que

A=P(λ 0
0 μ) P−1

. Posons V=( a
c )  et W=( b

d ) . Comme P  est inversible, son 

déterminant est non nul, donc a d−b c≠0 , donc V  et W  ne sont pas proportionnels.
Par calcul, on a A V=λV  et A W=μW .

• Réciproquement, on suppose qu'il existe deux réels λ  et μ  et deux matrices colonnes à 

coefficients réels non proportionnelles V=( a
c )  et W=( b

d )  telles que A V=λV  et 

A W=μW . 

On pose D=( λ 0
0 μ)  et P=( a b

c d ) .

Le déterminant de P  est non nul car V  et W  ne sont pas proportionnelles, donc P  est 
inversible, et  comme A V=λV  et A W=μW , on a A P=P D  donc A=P D P−1 .
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III – Exemple de marche aléatoire (chaine de Markov)

Problème     :   Dans un pays, deux opérateurs
de téléphonie mobile A et B se partagent le
marché. En 2010, A en contrôle 80 %, et B
20 %. On a observé que, chaque année :
• 60 % de la clientèle de A lui reste

fidèle, tandis que 40 % passe chez
B.

• 70 % de la clientèle de B lui reste
fidèle, tandis que 30 % passe chez
A.

Ces proportions sont stables : il n'y a pas de
fuite vers des opérateurs étrangers, et pas
d'abandon de consommation de produits.
On veut chercher à connaître la répartition
des parts de marché au bout d'une longue
période.

Modélisation     :   Pour tout n∈ℕ , soient an  et bn  les parts de marché de A et B en 2010+n .
L'année 2010+n+1 , les clients de A sont constitués des 60 % de clients fidèles à A de 2010+n  et 
des 30 % de clients de B de 2010+n  qui ont changé d'opérateur.
L'année 2010+n+1 , les clients de B sont constitués des 70 % de clients fidèles à B de 2010+n  et 
des 40 % de clients de A de 2010+n  qui ont changé d'opérateur.

On a donc pour tout n∈ℕ , {
an+ 1=0,6 an+0,3 bn

bn+ 1=0,4 an+0,7 bn
 avec {

a0=0,8
b0=0,2 .

1) Posons, pour n∈ℕ , Pn=( an

bn
) . Le système précédent se traduit par P n+1=( 0,6 0,3

0,4 0,7) Pn .

Définition     :   La matrice ( 0,6 0,3
0,4 0,7)  est appelée matrice de transition associée à la marche 

aléatoire.

2) Comme pour tout n∈ℕ  an+bn=1 , on a {an+1=0,6an+0,3(1−an)

bn+1=0,7bn+0,4 (1−bn)
⇔{an+1=0,4 (1−bn)+0,7bn

bn+1=0,3bn+0,4
.

On en déduit que pour n∈ℕ , P n+1=D P n+E , avec D=( 0,3 0
0 0,3)  et E=( 0,3

0,4) .

Définition     :   On appelle état stable de la marche aléatoire toute matrice S  telle que
S=D S+E . En effet, si un des termes de la suite (P n)  est égal à S , tous les termes suivants 

seront égaux à S .
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3) On résout S=D S+E  : soit S=( a
b) . On a donc

( ab)=(
0,3 0
0 0,3)(

a
b)+(

0,3
0,4)⇔ {a=0,3a+0,3

b=0,3b+0,4
⇔{

a=
3
7

b=
4
7

 donc S=(
3
7
4
7
) .

4) On pose pour n∈ℕ , X n=P n−S . Comme S=D S+E , on a :
X n+1=Pn+1 – S=D Pn+E – (D S+E )=D(Pn−S )=D X n⇔X n+1=D X n .
(X n)  est une suite géométrique de matrices de raison D  et de premier terme

X 0=P 0−S=(
0,8−

3
7

0,2−
4
7
)  soit X 0=(

13
35

−
13
35
) .

On a donc pour n∈ℕ , X n=Dn X 0=(0,3 0
0 0,3)

n

(
13
35

−
13
35
)=( 0,3n 0

0 0,3n)(
13
35

−
13
35
)=(

0,3n
×

13
35

0,3n
×(−13

35 )) .

5) On a donc comme X n=Pn−S , P n=(
0,3n

×
13
35
+

3
7

0,3n
×(−13

35 )+
4
7
) .

6) Comme −1<0,3<1 , on a lim
n→+∞

0,3n
=0 .

On en déduit que lim
n→+∞

0,3n
×

13
35
+

3
7
=

3
7

 et lim
n→+∞

0,3n
×(−13

35 )+
4
7
=

4
7

.

Donc lim
n→+∞

Pn=(
3
7
4
7
) .

Conclusion     :   La part de marché de A tend à se rapprocher de 
3
7

, celle de B tend à se rapprocher de

4
7

.
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IV – Suites de matrices colonnes

Dans cette partie, U n  est une matrice colonne à m  lignes, A  une matrice carrée d'ordre m  et
B  une matrice colonnes à m  lignes, avec m∈ℕ* .

On note (R)  la relation U n+1=AU n+B .

a) Expression du terme général

Une suite constante égale à S  vérifie la relation (R)  si et seulement si S=A S+B .
Dans ce cas, en posant X n=U n−S  on a X n+1=U n+1−S=AU n+B−(A S +B)=A(U n−S )=A X n .

Théorème     :   La suite (X n)n∈ℕ  définie par X n=U n−S  vérifie X n+1=A X n  et donc pour
n∈ℕ , X n=An X 0 , c'est-à-dire U n=An

(U 0−S)+S .

Preuve     :   On utilise le fait que (X n)n∈ℕ  est géométrique de raison A .

b) Limite d'une suite de matrices

Une suite de matrices (U n)n∈ℕ  (toutes de même format) converge vers la matrice L  si les 
coefficients de U n  convergent vers les coefficients de L  correspondants.
En pratique, on exprime chaque coefficient en fonction de n , et on cherche la limite de chaque 
coefficient.

Remarque     :   Si U n=AnU 0  et si lim
n→+∞

An
=L , alors lim

n→+∞
U n=LU 0 .
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