
ENSEMBLES DE NOMBRES

1 ) LES PRINCIPAUX ENSEMBLES DE NOMBRES

A ) DÉFINITIONS ET NOTATIONS

             ● ℕ  est l'ensemble des nombres entiers naturels .  ℕ={0;1 ;2 ;3 ; ... }

       L’ensemble des nombres entiers naturels différents de 0 se note ℕ* .

            ● ℤ est l'ensemble des nombres entiers relatifs (ou nombres entiers)  ℤ={... ;−3;−2 ;−1; 0;1 ;2 ;3 ; ... }

       L’ensemble des nombres entiers différents de 0 se note ℤ* .

Exemples :  27∈ℕ  et 27∈ℤ                        ;             −32∈ℤ   et −32∉ℕ

            ● ID est l'ensemble des nombres décimaux . ( nombres s'écrivant  n ´ 10 p  avec n et p  dans ℤ  ) 

Exemples :   0, 26=26×10−2 , donc 0,26 ∈ ID              ;        
1
3

∉ ID

            ● ℚ  est l'ensemble des nombres rationnels . ( nombres que l'on peut écrire sous la forme  
p
q

 , p  étant un nombre entier et q un entier non nul )

Exemples : 
2
3
∈ℚ     ;  5= 5

1
, donc 5∈ℚ                   ;       −12,57=− 1257

100
 , donc −12,57∈ℚ              ;           √3∉ℚ

            ● On appelle nombre irrationnel tout nombre que l'on ne peut pas écrire sous la forme 
p
q

  , p  étant un nombre entier et q un entier non nul

Exemples :   
           ●   La longueur d’un carré d’aire 2 cm2 , noté √2  est un nombre irrationnel . (Démonstration en exercice)
           ●   π  et un nombre irrationnel

            ● ℝ  est l'ensemble des nombres réels , c'est à dire qui sont soit rationnels, soit irrationnels.
       ℝ  est l’ensemble des abscisses des points d’une droite graduée munie d’un repère (O,I).

Exemples :   √2 ∈ ℝ \ ℚ   ( on lit ℝ  privé de ℚ  )

B ) SYMBOLE D’INCLUSION

Définition :

Soit A et B deux ensembles :

A Ì B se lit : " A est inclus dans B " , " A est contenu dans B " ou " A est une partie de B "
A Ì B signifie que tout élément de l'ensemble  A appartient à l'ensemble B.
Si A n'est pas inclus dans B on note : A Ë B

Exemple : ℕ  Ì ℤ  Ì  ID Ì ℚ   Ì ℝ  

                     ℚ  Ë  ℤ car par exemple  
2
3

 Î ℚ   et   
2
3

 Ï ℤ

   

2 ) INTERVALLES

A ) DÉFINITIONS ET NOTATIONS 

Remarque préliminaire :
On a vu que sur une droite munie d’un repère  (O,I) , à tout point M de cette droite, on peut associer un réel, appelé abscisse de M dans le repère (O,I). 
Dans la suite, pour représenter les réels, on se contentera d’utiliser cette droite sans marquer le nom des points. 
Cette droite est appelée droite des réels.
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Définition :

Soit a  et b  deux réels tels que ab  .
L'ensemble des nombres réels vérifiant la double inégalité axb  est appelé intervalle fermé a , b  de ℝ  noté [a ; b ] . 
Les nombres a  et b  sont les bornes de l'intervalle [a ; b ] .
b−a est l'amplitude de l'intervalle [a ; b ] . (c'est à dire sa " largeur " )

Les différents cas sont représentés dans le tableau ci-dessous.

    REPRÉSENTATION                   INÉGALITÉ                            INTERVALLE    
    ensemble des réels x vérifiant :

      a                    b
  --[----------------]-->

axb [a ; b ] Intervalle fermé

      a                    b
  --]----------------[--> axb ]a ; b [ Intervalle ouvert

      a                    b
  --[----------------[-->

axb [a ; b [ Intervalle semi fermé à gauche 
(ou semi ouvert à droite)

      a                    b
  --]----------------]--> axb ]a ; b ] Intervalle semi fermé à droite 

(ou semi ouvert à gauche)
      a                        
  --[--------------------> xa [a ;∞ [ Intervalle fermé 

( ∞ , plus l’infini,  n’est pas un nombre)
     a
  --]--------------------> xa ]a ;∞ [ Intervalle ouvert

                       a
  ----------------]----->           xa ]– ∞ ; a ] Intervalle fermé 

( −∞ , moins  l’infini,  n’est pas un nombre)
                        a
  ----------------[-----> xa ]– ∞ ; a [ Intervalle ouvert

Remarques : 

           ●  L’intervalle ]−∞ ;∞[  n’est rien d’autre que ℝ
           ●  Notation :  ℝ+=[0;+∞[  , ℝ−=]−∞ ;0 ]  , ℝ+

*=]0;+∞[  et ℝ−
* =]−∞ ;0[

B ) INTERSECTION ET RÉUNION

Définition :

Soit A et B deux ensembles.
           ●   L’intersection de ces deux ensembles, noté A∩B  ( A inter B ) , est 

l’ensemble de tous les éléments communs à A et à B .
           ●  La réunion de ces deux ensembles , noté A∪B  ( A union B ) , 

est l’ensemble de tous les éléments appartenant à A ou à B .

 

Remarque : 

           ●  Si deux ensembles A et B n’ont pas d’éléments communs, alors on dit que leur intersection est vide . On note : A∩B=∅
           ●  Notation : ℝ*=]−∞ ;0 [∪]0;+∞ [

Exemples :   

            ● [– 5 ; 3 ]∩ ]1 ; 5]= ]1 ; 3 ]
            ● ]– 3 ; 2 [∪ [1 ; 3,5 ]= ]– 3 ; 3,5 ]
            ● [– 5 ; 2 ]∩ [3 ; 7,5[=∅

3 ) ENCADRER ET ARRONDIR UN R  É  EL  

Définitions :

- Donner un encadrement décimal d’un réel x , c’est donner deux nombres décimaux a  et b  tels que a⩽x⩽b .
b−a  est appelée amplitude de l’encadrement.

On dit qu’un encadrement est à 10− n  près ( où n∈ℕ  ) si son amplitude est égale à 10− n . 

- Arrondir un nombre, c’est lui trouver la valeur la plus proche à une précision donnée.

Exemple :  
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3, 1⩽π⩽3,2  est un encadrement de π  d’amplitude 10−1

3,1 est une valeur approchée par défaut de π .

3,2 est une valeur approchée par excès de π  .

3,1 est l’arrondi de π  à 10−1  près.   ( On regarde le chiffre situé juste après la valeur approchée par défaut : si ce chiffre est 0,1,2,3 ou 4, 

                                                                             on choisit comme arrondi, la valeur approchée par défaut, sinon on choisit la valeur approchée par excès )

4 ) VALEUR ABSOLUE

Définition     :  

La distance entre deux points de la droite des réels est la différence entre l’abscisse la plus grande et l’abscisse la plus petite.

Exemple :
AB=1,7−(−4,5 )=6,2

Définition     :  

Pour tout nombre réel x, la   valeur absolue   de x (notée ∣x∣) est la distance entre x  et 0.
On a :

∣x∣={x si x0 −x si x0

Exemples :

           ●  ∣5∣=5    car 5 est un nombre positif.
            ● ∣−3∣=3    car -3 est un nombre négatif.
            ● Si x  est un nombre réel, ∣x2∣=x2  car  x20.

Remarques : 
Pour tout réel x , on a : 

           ●  ∣x∣=0  ⇔  x=0                                   ●  |x|=|a|  ⇔  x=a  ou x=−a                                    ●  ∣−x∣=∣x∣                                        ●  x2=∣x∣

Propriété :

La distance entre deux réels a  et b  est égale à |b−a| La distance entre a  et b  est la même que la 
distance entre b  et a  . On a donc |b−a|=|a−b|

Exemple : La distance entre −4  et −7  est  |−4−(−7 )| =3

Propriété :

Soit a∈ℝ  et r∈ℝ+ .
On dit que les intervalles [a−r ;a+r ]  et ]a−r ;a+r [  ont pour centre a  et pour rayon r .
On a :

           ●            x∈[a−r ;a+r ]  ⇔  |x−a|⩽r  
           ●           x∈]a−r ;a+r [  ⇔  |x−a|<r
                  

                                                          3,5                                             3,5

Exemple :

L’intervalle [−2; 5 ]  a pour amplitude 5−(−2 )=7  , pour rayon 
7
2
=3,5  et pour centre 

5+(−2 )
2

=1,5

On a : x∈[−2;5]  ⇔  |x−1,5|⩽3,5
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