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b. Pour tout entier naturel n, notons Pn : «  0 < un »

— Initialisation : Si n =0 alors u0=
1
2
>0 , donc P0 est vraie

— Hérédité : Supposons que pour k entier naturel fixé, on ait Pk vraie (c-à-d. 0 < uk ).

Montrons que Pk+1  est vraie aussi (c-à-d. 0 < uk +1 ).
Par hypothèse de récurrence 0 < uk  donc 0 < 3uk et 0 < 1+2uk .
uk +1 est le quotient de deux nombres strictement positifs,

donc 0 < uk +1  et Pk+1  est vraie.
— Conclusion :
P0  est vraie et Pn  est héréditaire, par le principe de récurrence

on a bien pour tout entier naturel n, 0 < un .
2. Comme pour tout entier naturel n,0< un , pour étudier les variations de la suite, on peut 
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=
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Mais, un<1⇔2un<2⇔1+2un<3⇔1< 3
1+2un

car 1+2un>0  

ainsi la suite (un) est croissante.
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(vn) est donc une suite géométrique de raison 3 et de premier terme v0=1

b. Pour tout entier naturel n vn=v0q
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d. on sait que lim

n→+∞
qn=+∞  quand q >1   En étudiant le quotient, on arrive à une forme indéterminée.
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Par somme  lim
n→+∞
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=1 , par quotient lim
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4. 
n  ← 0 
u  ← 0,5
 tant que u⩽0 ,9
      n  ← n+1

      u  ← 
3 u

1+u
fin du tant que 
afficher n  


